JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (6): 57-67.doi: 10.6040/j.issn.1671-9352.0.2022.595

Previous Articles     Next Articles

Existence of mild solutions for the nonlocal problem of second-order impulsive evolution equations

Li LI(),He YANG*()   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2022-11-14 Online:2023-06-20 Published:2023-05-23
  • Contact: He YANG E-mail:2430353979@qq.com;yanghe@nwnu.edu.cn

Abstract:

A new definition of mild solutions of the second-order impulsive evolution equations involving nonlocal condition $ u(0)=\sum\limits_{k=1}^n C_k u\left(\tau_k\right)$ is given by introducing a Green function. Then, the existence of mild solutions of the concerned problem is proved by applying the Sadovskii fixed point theorem. At last, an example is provided as an application of the obtained abstract result.

Key words: second-order impulsive evolution equation, cosine family, nonlocal condition, Sadovskii fixed point theorem, mild solution

CLC Number: 

  • O175.15
1 LAKSHMIKANTHAM V , BAINOV D D , SIMEONOV P S . Theory of impulsive differential equations[M]. Singapore: World Scientific, 1989.
2 SAMOILENKO A M , PERESTYUK N A . Impulsive differential equations[M]. Singapore: World Scientific, 1995.
3 BALL J . Initial boundary value problems for an extensible beam[J]. Math Anal Appl, 1973, 42, 61- 90.
doi: 10.1016/0022-247X(73)90121-2
4 FITZGIBBON W E . Global existence and boundedness of solutions to the extensiblebeam equation[J]. Math Anal, 1982, 13, 739- 745.
5 FATTORINI H O . Second order linear differential equations in Banach spaces[M]. NorthHolland: Elsevier Science, 1985: 24- 38.
6 TRAVIS C C , WEBB G F . Compactness, regularity, and uniform continuity properties of strongly continuous cosine families[J]. Houston J Math, 1977, 3 (4): 555- 567.
7 TRAVIS C C , WEBB G F . Cosine families and abstract nonlinear second order differential equation[J]. Acta Math Acad Sci Hungar, 1978, 32 (3/4): 75- 96.
8 BALACHANDRAN K , PARK D G , ANTHONI S M . Existence of solutions of abstract-nonlinear second-order neutral functional integrodifferential equations[J]. Comput Math Appl, 2003, 46 (8/9): 1313- 1324.
9 HERNANDEZ E . Some comments on: existence of solutions of abstract nonlinear second-order neutral functional integrodifferential equations[J]. Comput Math Appl, 2005, 50 (5/6): 655- 669.
10 AKHMEROV R R . Measures of noncompactness and condensing operators[M]. Boston: Birkhauser, 1992.
11 ALVAREZ J C . Measure of noncompactness and fixed points of nonexpansive condensing mappings in locally convex spaces[J]. Rev Real Acad Cienc Exact Fis Natur Madrid, 1985, 79 (1/2): 53- 66.
12 DENG K . Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions[J]. J Math Anal Appl, 1993, 179 (2): 630- 637.
doi: 10.1006/jmaa.1993.1373
13 AKCA H , COVACHEV V , COVACHEVA Z . Existence theorem for a second-order impulsive functional differential equation with a nonlocal condition[J]. J Nonlinear Convex Anal, 2016, 17 (6): 1129- 1136.
14 HENRIQUEZ H R , HERNANDEZ E . Existence of solutions of a second order abstract functional Cauchy problem with nonlocal conditions[J]. Ann Polon Math, 2006, 88 (2): 141- 159.
doi: 10.4064/ap88-2-5
15 CHEN Pengyu , ZHANG Xuping , LI Yongxiang . Approximate controllability of non-autonomous evolution system with nonlocal conditions[J]. J Dyn Control Syst, 2020, 26 (1): 1- 16.
doi: 10.1007/s10883-018-9423-x
16 KAMENSKII M , OBUKHOVSKII V , ZECCA P . Condensing multivalued maps and semilinear differential inclusions in banach spaces[M]. New York: W. de Gruyter, 2001.
17 HEINZ H R . On the behavior of measure of noncompactness with respect to differentiation and integration of vector-valued functions[J]. Nonlinear Anal, 1983, 7 (12): 1351- 1371.
doi: 10.1016/0362-546X(83)90006-8
18 郭大钧. 非线性分析中的半序方法[M]. 济南: 山东科学技术出版社, 2005.
GUO Dajun . Semiorder methods in nonlinear analysis[M]. Jinan: Shandong Science and Technology Press, 2005.
19 SADOVSKII B N . On a fixed point principle[J]. Funct Anal Appl, 1967, 1 (2): 74- 76.
[1] SUN Pan, ZHANG Xuping. Continuous dependence of solution for impulsive evolution equations with infinite delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(6): 77-83.
[2] YUAN Tian-jiao, LI Qiang. Existence of IS-asymptotically periodic mild solutions for a class of impulsive evolution equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(6): 10-21.
[3] CHEN Peng-yu, MA Wei-feng, Ahmed Abdelmonem. Existence of mild solutions for a class of fractional stochastic evolution equations with nonlocal initial conditions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 13-23.
[4] CUI Jing, LIANG Qiu-ju. Existence and controllability of nonlocal stochastcic integro-differential equations driven by fractional Brownian motion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 81-88.
[5] LI Xi-liang1,2, HAN Yu-liang2. Existence and uniqueness of almost automorphic mild solutions to
a class of semilinear integro-differential equations
[J]. J4, 2013, 48(12): 30-34.
[6] YANG He. Existence of mild solutions for impulsive evolution equations with nonlocal conditions in the α-norm [J]. J4, 2011, 46(11): 70-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TANG Feng-qin1, BAI Jian-ming2. The precise large deviations for a risk model with extended negatively upper orthant dependent claim  sizes[J]. J4, 2013, 48(1): 100 -106 .
[2] CHENG Zhi1,2, SUN Cui-fang2, WANG Ning1, DU Xian-neng1. On the fibre product of Zn and its property[J]. J4, 2013, 48(2): 15 -19 .
[3] TANG Xiao-hong1, HU Wen-xiao2*, WEI Yan-feng2, JIANG Xi-long2, ZHANG Jing-ying2, SHAO Xue-dong3. Screening and biological characteristics studies of wide wine-making yeasts[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 12 -17 .
[4] LUO Si-te, LU Li-qian, CUI Ruo-fei, ZHOU Wei-wei, LI Zeng-yong*. Monte-Carlo simulation of photons transmission at alcohol wavelength in  skin tissue and design of fiber optic probe[J]. J4, 2013, 48(1): 46 -50 .
[5] TIAN Xue-gang, WANG Shao-ying. Solutions to the operator equation AXB=C[J]. J4, 2010, 45(6): 74 -80 .
[6] HUO Yu-hong, JI Quan-bao. Synchronization analysis of oscillatory activities in a biological cell system[J]. J4, 2010, 45(6): 105 -110 .
[7] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .
[8] DONG Wei-wei. A new method of DEA efficiency ranking for decision making units with independent subsystems[J]. J4, 2013, 48(1): 89 -92 .
[9] ZHANG Jing-you, ZHANG Pei-ai, ZHONG Hai-ping. The application of evolutionary graph theory in the design of knowledge-based enterprises’ organization strucure[J]. J4, 2013, 48(1): 107 -110 .
[10] YANG Lun, XU Zheng-gang, WANG Hui*, CHEN Qi-mei, CHEN Wei, HU Yan-xia, SHI Yuan, ZHU Hong-lei, ZENG Yong-qing*. Silence of PID1 gene expression using RNA interference in C2C12 cell line[J]. J4, 2013, 48(1): 36 -42 .