JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (6): 46-56.doi: 10.6040/j.issn.1671-9352.0.2022.520

Previous Articles     Next Articles

Global BMO estimations for obstacle problems of a class of non-uniformly elliptic equations

Yanmin GUO(),Song ZHAO,Yuxia TONG*()   

  1. College of Science, North China University of Science and Technology, Tangshan 063210, Hebei, China
  • Received:2022-10-07 Online:2023-06-20 Published:2023-05-23
  • Contact: Yuxia TONG E-mail:guoyanmin1125@126.com;tongyuxia@126.com

Abstract:

The regularity of weak solutions to the obstacle problem for non-uniformly elliptic equations is studied. When the gradient of the solution to the asymptotic regular problem is close to infinity, the solution of the regular problem is used to obtain an approximate solution to the asymptotic regular problem, and the bounded mean oscillation (BMO) estimates of the weak solutions gradient of the obstacle problem are obtained based on the Young inequality and perturbation discussion.

Key words: non-uniformly elliptic equation, obstacle problem, weak solution, global BMO estimation

CLC Number: 

  • O175.25
1 ZHIKOV V V . Averaging of functionals of the calculus of variations and elasticity theory[J]. Mathematics of the USSR-Izvestiya, 1987, 29 (1): 33- 66.
doi: 10.1070/IM1987v029n01ABEH000958
2 COLOMBO M , MINGIONE G . Calderón-Zygmund estimates and non-uniformly elliptic operators[J]. Journal of Functional Analysis, 2016, 270 (4): 1416- 1478.
doi: 10.1016/j.jfa.2015.06.022
3 LIANG Shuang , ZHENG Shenzhou . Calderón-Zygmund estimates for asymptotically regular non-uniformly elliptic equations[J]. Journal of Mathematical Analysis and Applications, 2020, 484 (2): 123749.
doi: 10.1016/j.jmaa.2019.123749
4 BYUN S S , CHO Y , OH J . Gradient estimates for double phase problems with irregular obstacles[J]. Nonlinear Analysis: Theory, Methods and Applications, 2018, 177, 169- 185.
doi: 10.1016/j.na.2018.02.008
5 BYUN S S , OH J . Global gradient estimates for non-uniformly elliptic equations[J]. Calculus of Variations and Partial Differential Equations, 2017, 56 (2): 1- 36.
6 ZHANG Xiaolin , ZHENG Shenzhou . Besov regularity for the gradients of solutions to non-uniformly elliptic obstacle problems[J]. Journal of Mathematical Analysis and Applications, 2021, 504 (2): 125402.
doi: 10.1016/j.jmaa.2021.125402
7 WANG Lihe , YAO Fengping . Global estimates for non-uniformly nonlinear elliptic equations in a convex domain[J]. Journal of Mathematical Analysis and Applications, 2016, 439 (1): 307- 322.
doi: 10.1016/j.jmaa.2016.02.062
8 STEIN E , MURPHY T . Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[M]. Princeton: Princeton University Press, 1993: 140- 150.
9 DIBENEDETTO E , MANFREDI J . On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems[J]. American Journal of Mathematics, 1993, 115 (6): 1107- 1134.
10 DIENING L , KAPLICKÝ P , SCHWARZACHER S . BMO estimates for the p-Laplacian[J]. Nonlinear Analysis: Theory, Methods and Applications, 2012, 75 (2): 637- 650.
doi: 10.1016/j.na.2011.08.065
11 YU Haiyan , ZHENG Shenzhou . BMO estimate to A-harmonic systems with discontinuous coefficients[J]. Nonlinear Analysis: Real World Applications, 2015, 26, 64- 74.
doi: 10.1016/j.nonrwa.2015.05.003
12 TIAN Qiaoyu , ZHANG Shengzhi , XU Yonglin , et al. BMO estimates for quasilinear elliptic equations with BMO coefficients[J]. Journal of Mathematical Research with Applications, 2016, 36 (6): 673- 681.
13 YAO Fengping , ZHANG Chao , ZHOU Shulin . Global regularity estimates for a class of quasilinear elliptic equations in the whole space[J]. Nonlinear Analysis: Theory, Methods and Applications, 2020, 194, 111307.
doi: 10.1016/j.na.2018.07.004
14 GIAQUINTA M , GIUSTI E . On the regularity of the minima of variational integrals[J]. Acta Mathematica, 1982, 148 (1): 31- 46.
15 BYUN S S , LEE H S . Gradient estimates for non-uniformly elliptic problems with BMO nonlinearity[J]. Journal of Mathematical Analysis and Applications, 2023, 520 (1): 126894.
doi: 10.1016/j.jmaa.2022.126894
16 COLOMBO M , MINGIONE G . Regularity for double phase variational problems[J]. Archive for Rational Mechanics and Analysis, 2015, 215 (2): 443- 496.
doi: 10.1007/s00205-014-0785-2
17 LIEBERMAN G M . The natural generalization of the natural conditions of ladyzhenskaya and Ural'tseva for elliptic equations[J]. Communications in Partial Differential Equations, 1991, 16 (23): 311- 361.
[1] ZHAO Song, KANG Di, XU Xiu-juan. Regularity of weak solutions for obstacle problems with natural growth [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(4): 104-110.
[2] XUE Ting-ting, XU Yan, LIU Xiao-ping. Existence of nontrivial weak solutions for fractional boundary value problems with variable coefficients [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(12): 45-51.
[3] ZHANG Ya-nan, YANG Ya-qi, TONG Yu-xia. Local gradient estimates for weak solutions of obstacle problems to a class of A-harmonic equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(6): 76-83.
[4] . Regularity for solutions of elliptic obstacle problems with subcritical growth [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 57-63.
[5] ZHEN Wei-wei, ZENG Jian, REN Jian-long. Time dependent parabolic inverse source problem based on variational theory [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 61-71.
[6] JIANG Jing, GAO Qing-ling, ZHANG Ke-yu. Existence of weak solutions for a second order Dirichlet boundary value problem on time scales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 99-103.
[7] LI Feng-ping, CHEN Guang-xia. Regularity criteria for weak solutions to the 3D magneto-micropolar fluid equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(05): 60-67.
[8] BIAN Dong-fen, YUAN Bao-quan*. On the nonexistence of global weak solutions to the compressible MHD equations [J]. J4, 2011, 46(4): 42-48.
[9] LI Juan. Local integrability for very weak solutions of  nonhomogeneous obstacle problems [J]. J4, 2010, 45(8): 66-70.
[10] HU Mo-Yin. Multiplicity results for a class of quasi-linear Neumann problems [J]. J4, 2009, 44(10): 39-42.
[11] XIAO Hua . Continuous dependence of the solution of multidimensional reflected backward stochastic differential equations on the parameters [J]. J4, 2007, 42(2): 68-71 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .
[2] DONG Wei-wei. A new method of DEA efficiency ranking for decision making units with independent subsystems[J]. J4, 2013, 48(1): 89 -92 .
[3] ZHANG Jing-you, ZHANG Pei-ai, ZHONG Hai-ping. The application of evolutionary graph theory in the design of knowledge-based enterprises’ organization strucure[J]. J4, 2013, 48(1): 107 -110 .
[4] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .
[5] YANG Yong-wei1, 2, HE Peng-fei2, LI Yi-jun2,3. On strict filters of BL-algebras#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 63 -67 .
[6] LI Min1,2, LI Qi-qiang1. Observer-based sliding mode control of uncertain singular time-delay systems#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 37 -42 .
[7] TANG Feng-qin1, BAI Jian-ming2. The precise large deviations for a risk model with extended negatively upper orthant dependent claim  sizes[J]. J4, 2013, 48(1): 100 -106 .
[8] CHENG Zhi1,2, SUN Cui-fang2, WANG Ning1, DU Xian-neng1. On the fibre product of Zn and its property[J]. J4, 2013, 48(2): 15 -19 .
[9] TANG Xiao-hong1, HU Wen-xiao2*, WEI Yan-feng2, JIANG Xi-long2, ZHANG Jing-ying2, SHAO Xue-dong3. Screening and biological characteristics studies of wide wine-making yeasts[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 12 -17 .
[10] GUO Lan-lan1,2, GENG Jie1, SHI Shuo1,3, YUAN Fei1, LEI Li1, DU Guang-sheng1*. Computing research of the water hammer pressure in the process of #br# the variable speed closure of valve based on UDF method[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 27 -30 .