JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (12): 45-51.doi: 10.6040/j.issn.1671-9352.0.2021.058
XUE Ting-ting, XU Yan, LIU Xiao-ping
CLC Number:
[1] 胡芳芳, 胡卫敏. 具p-Laplacian算子的分数阶微分方程边值问题的多重正解[J]. 东北师大学报(自然科学版), 2020, 52(3):62-67. HU Fangfang, HU Weimin. Multiple positive solutions for boundary value problems of fractional differential equations with p-Laplacian operator[J]. Journal of Northeast Normal University(Natural Science Edition), 2020, 52(3):62-67. [2] ERVIN V, ROOP J. Variational formulation for the stationary fractional advection dispersion equation[J]. Numerical Methods for Partial Differential Equations, 2006, 22(3):558-576. [3] 王永庆, 刘立山. Banach空间中分数阶微分方程m点边值问题的正解[J]. 数学物理学报, 2012, 32(1):246-256. WANG Yongqing, LIU Lishan. Positive solutions fractional m-point boundary value problem in Banach spaces[J]. Acta Mathematica Scientia, 2012, 32(1):246-256. [4] 刘帅, 贾梅, 秦小娜. 带积分边值条件的分数阶微分方程解的存在性和唯一性[J]. 上海理工大学学报, 2014, 36(5):409-415. LIU Shuai, JIA Mei, QIN Xiaona. Existence and uniqueness of solutions of the fractional differential equation with integral boundary value conditions[J]. Journal of University of Shanghai for Science and Technology, 2014, 36(5):409-415. [5] 苏新卫. 分数阶微分方程耦合系统边值问题解的存在性[J]. 工程数学学报, 2009, 26(1):133-137. SU Xinwei. The existence of solution to boundary value problems for a coupled system of nonlinear fractional differential equations[J]. Chinese Journal of Engineering Mathematics, 2009, 26(1):133-137. [6] 陆心怡, 张兴秋, 王林. 一类分数阶微分方程m点边值问题正解的存在性[J]. 系统科学与数学, 2014, 34(2):218-230. LU Xinyi, ZHANG Xingqiu, WANG Lin. Existence of positive solutions for a class of fractional differential equations with m-point boundary value conditions[J]. Journal of Systems Science and Mathematical Sciences, 2014, 34(2):218-230. [7] JIAO Feng, ZHOU Yong. Existence results for fractional boundary value problem via critical point theory[J]. International Journal of Bifurcation and Chaos, 2012, 22(4):1250086. [8] ZHANG Ziheng, YUAN Rong. Infinitely-many solutions for subquadratic fractional Hamiltonian systems with potential changing sign[J]. Advances in Nonlinear Analysis, 2015, 4(1):59-72. [9] TORRES C. Ground state solution for differential equations with left and right fractional derivatives[J]. Mathematical Methods in the Applied Sciences, 2016, 38(18):5063-5073. [10] IDCZAK D, WALCZAK S. Fractional Sobolev spaces via Riemann-Liouville derivatives[J/OL]. Journal of Function Spaces and Applications, 2013[2021-01-18]. https://doi.org/10.1155/2013/128043. [11] MAWHIN J, WILLEM M. Critical point theory and Hamiltonian systems[M]. New York: Springer-Verlag, 1989. [12] 宣本金. 变分法:理论与应用[M].合肥: 中国科学技术大学出版社, 2006. XUAN Benjin. Variational method: theory and application[M]. Hefei: Press of University of Science and Technology of China, 2006. [13] BREZIS H. Functional analysis, Sobolev spaces and partial differential equations[M]. New York: Springer, 2011. |
[1] | LUO Li-ping, ZENG Yun-hui, LUO Zhen-guo. Oscillation conditions of certain nonlinear damped fractional differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(12): 40-44. |
[2] | ZHANG Ya-nan, YANG Ya-qi, TONG Yu-xia. Local gradient estimates for weak solutions of obstacle problems to a class of A-harmonic equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(6): 76-83. |
[3] | . Existence of ground states for linear coupled systems of lower critical Choquard type [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 62-67. |
[4] | ZHANG Nian, JIA Gao. Existence of infinitely many high energy solutions of a class of fourth-order elliptic equations with nonlocal terms [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(6): 81-87. |
[5] | WU Yi-jia, CHENG Rong. Infinitely many nontrival solutions for a class of Schrödinger equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(2): 84-88. |
[6] | YANG Fei, LIU Xi-qiang. Exact solution of GKP equation with variable coefficients [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(2): 111-120. |
[7] | WANG Ying-mei, WANG Zhen-dong, LI Gong-sheng. An image restoration algorithm based on variable exponential fractional order total variation and integer order total variation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(11): 115-126. |
[8] | SONG Jun-qiu, JIA Mei, LIU Xi-ping, LI Lin. Existence of positive solutions for fractional nonhomogeneous boundary value problem with p-Laplacian [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 57-66. |
[9] | CHEN Li-zhen, FENG Xiao-jing, LI Gang. Existence of nontrival solutions for a class of Schrödinger-Poisson systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 74-78. |
[10] | LI Hui-hui, LIU Xi-qiang, XIN Xiang-peng. Differential invariants and exact solutions of variable coefficients Benjamin-Bona-Mahony-Burgers equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 51-60. |
[11] | ZHEN Wei-wei, ZENG Jian, REN Jian-long. Time dependent parabolic inverse source problem based on variational theory [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 61-71. |
[12] | ZHANG Sha, JIA Mei, LI Yan, LI Xiao-chen. Existence and uniqueness of solutions for three point boundary value problems of impulsive fractional differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 66-72. |
[13] | ZHANG Di, LIU Wen-bin. Existence of solutions for p(t)-Laplacian fractional infinite-point boundary value problems at resonance [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 72-80. |
[14] | SU Xiao-feng, JIA Mei, LI Meng-meng. Existence of solution for fractional differential equation integral boundary value problem at resonance [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 66-73. |
[15] | JIANG Jing, GAO Qing-ling, ZHANG Ke-yu. Existence of weak solutions for a second order Dirichlet boundary value problem on time scales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 99-103. |
|