JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (2): 111-120.doi: 10.6040/j.issn.1671-9352.0.2017.565

Previous Articles    

Exact solution of GKP equation with variable coefficients

YANG Fei, LIU Xi-qiang*   

  1. School of Mathematics Science, Liaocheng University, Liaocheng 252059, Shandong, China
  • Published:2019-02-25

Abstract: In order to solve a kind of GKP equation with variable coefficients, the form of the solution is first constructed then combined with the new solutions of different auxiliary equations and corresponding Bäcklund transformations. With the help of mathematical calculation software, the new exact solutions of infinite sequence soliton-like of the equation are obtained. The types of these solutions include Jacobi elliptic function type, trigonometric function type, exponential function type, hyperbolic function type, etc. Using the hypothetical solitary wave method, this kind of GKP equation with variable coefficients is studied. Then alternative solitary wave solutions are obtained.

Key words: GKP equation with variable coefficients, auxiliary equation, Bä, cklund transformation, infinite sequence exact solutions

CLC Number: 

  • O175.2
[1] 许晓革,张小媛,孟祥花.Bell多项式在变系数Gardner-KP方程中的应用[J].量子电子学报,2016,33(6):671-679. XU Xiaoge, ZHANG Xiaoyuan, MENG Xianghua. The application of bell polynomials in variable coefficient Gardner-KP equation[J]. Chinese Journal of Quantum Electronics, 2016, 33(6):671-679.
[2] WAZWAZ A M. Soliton and sigular solitons for the Gardner-KP equation[J]. Applied Mathematics and Computation, 2008, 204:162-169.
[3] 严经坤.改进的F-展开法及其在一些孤立子方程中的应用[D].郑州:郑州大学,2009. YAN Jingkun. The improved F-expansion method and its application to some soliton equation[D]. Zhengzhou: Zhengzhou University, 2009.
[4] XU Bin, LIU Xiqiang. Classification,reduction,group invariant solutions and conservation laws of the Gardner-KP equation[J]. Applied Mathematics and Computation, 2009, 215:1244-1250.
[5] SHAKEEL M, MOHYUD D. Soliton solutions for the positive Gardner-KP equation by(G'/G)-expansion method[J]. Ain Shams Engineering Journal, 2014, 5:951-958.
[6] 李德生,张鸿庆.(2+1)维色散水波系统的非行波解的新族[J].中国物理,2004,13:1377-1381. LI Deshen, ZHANG Hongqing. New families of non-travelling wave solutions to the(2+1)-dimensional modified dispersive water-wave system[J]. Chinese Physics, 2004, 13:1377-1381.
[7] 马松华,方建平.扩展的(2+1)维浅水波方程的尖峰孤子解及其相互作用[J].物理学报,2012,61(18):180505:1-6. MA Songhua, FANG Jingping. Peaked soliton solutions and interaction between solitons for the extended(2+1)-dimensional shallow water wave equation[J]. Acta Physical Sinica, 2012, 61(18):180505:1-6.
[8] 套格图桑,伊丽娜.Camassa-Holm-r方程的无穷序列类孤子新解[J].物理学报,2014,3(12):1-9. Taogetusang, YI Lina. The infinite sequence class soliton solutions of the Camassa-Holm-r equation[J]. Acta Physical Sinica, 2014, 3(12):1-9.
[9] 套格图桑,斯仁道尔吉.构造变系数非线性发展方程精确解的一种方法[J].物理学报,2009,58(4):2121-2126. Taogetusang, Sirendaoerji. A method for constructing exact solutions of nonlinear evolution equations with variable coefficients[J]. Acta Physical Sinica, 2009, 58(4):2121-2126.
[10] 套格图桑,那仁满都拉.第二种椭圆方程构造变系数非线性发展方程的无穷序列精确解[J].物理学报,2011,60(9):1-12. Taogetusang, Narenmandula. The second kind of elliptic equation constructs the infinite sequence exact solution of the nonlinear evolution equation of the variable coefficient[J]. Acta Physical Sinica, 2011, 60(9):1-12.
[11] 白玉梅,套格图桑.变系数(2+1)维Broer-Kaup方程的无穷序列新精确解[J].内蒙古师范大学学报(自然科学版),2015,44(6):743-748. BAI Yumei, Taogetusang. New exact solutions in infinite sequence of variable coefficient(2+1)-dimensional Broer-Kaup equation[J]. Journal of Inner Mongolia Normal University(Natural Science Edition), 2015, 44(6):743-748.
[12] 套格图桑,斯仁道尔吉,李姝敏. Riccati方程的新应用[J].中国物理B,2010,19(8):080303:1-8. Taogetusang, Sirendaoerji, LI Shumin. New application to Riccati equation[J]. Chinese Physics B, 2010, 19(8):080303:1-8.
[13] 王岗伟,刘希强,张颖元.变系数mKdV方程的精确解[J].井冈山大学学报(自然科学版),2012,33(5):1-5. WANG Gangwei, LIU Xiqiang, ZHANG Yiyuan. Exact solutions of mKdV equations with variable coefficients[J]. Journal of Jinggangshan University(Natural Science), 2012, 33(5):1-5.
[14] 孙玉真,王振立,王岗伟,等.广义变系数五阶KdV和BBM方程的孤立波解[J].量子电子学报,2013,30(4):398-404. SUN Yuzhen, WANG Zhenli, WANG Gangwei, et al. Soliton solutions for generalized fifth-order KdV and BBM equations with variable coefficients[J]. Chinese Journal of Quantum Electronics, 2013, 30(4):398-404.
[15] 洪宝剑,卢殿臣.变系数(2+1)维Broer-Kaup方程新的类孤子解[J].原子与分子物理学报,2008,25(1):130-134. HONG Baojian, LU Dianchen. New soliton-like solutions of the variable coefficient(2+1)-dimensional Broer-Kaup equation[J]. Atomic and Molecular Physics, 2008, 25(1):130-134.
[16] WAZWAZ A M, TRIKI H. Soliton solutions for a generalized KdV and BBM equations with-time-dependent coefficients[J]. Communications in Nonlinear Science & Numerical Simulation, 2011, 16:1122-1126.
[1] FENG Xiao-zhou, XU Min, WANG Guo-hui. Coexistence solution of a predator-prey system with B-D functional response and toxin effects [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 53-61.
[2] MA Xia, YAO Mei-ping. Existence of traveling wave solutions for hantavirus transmission model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 48-52.
[3] ZHEN Wei-wei, ZENG Jian, REN Jian-long. Time dependent parabolic inverse source problem based on variational theory [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 61-71.
[4] LI Hui-hui, LIU Xi-qiang, XIN Xiang-peng. Differential invariants and exact solutions of variable coefficients Benjamin-Bona-Mahony-Burgers equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 51-60.
[5] . Regularity for solutions of elliptic obstacle problems with subcritical growth [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 57-63.
[6] DONG Ya-ying. Global bifurcation structure in a predator-prey model with a spatial degeneracy [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 76-84.
[7] ZHANG Dao-xiang, SUN Guang-xun, MA Yuan, CHEN Jin-qiong, ZHOU Wen. Hopf bifurcation and spatial patterns in a delayed diffusive predator-prey system with Holling-III functional response and linear harvesting effect [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 85-94.
[8] ZHANG Tai-nian, LI Zhao-xing. Convergence analysis for inverse problems in a degenerate parabolic equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 35-42.
[9] DONG Li. Lower bounds for blow up time of two nonlinear wave equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 56-60.
[10] DUAN Shuang-shuang, QIAN Yuan-yuan. The pointwise estimates of solutions to the Cauchy problem of Keller-Segel equations with cross-diffusion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 40-47.
[11] LI Yu, LIU Xi-qiang. Symmetry, reduction and exact solutions of the extended KP-Benjamin-Bona-Mahoney equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 77-84.
[12] ZHANG Dao-xiang, ZHAO Li-xian, HU Wei. Turing instability induced by cross-diffusion in a three-species food chain model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 88-97.
[13] FU Juan, ZHANG Rui, WANG Cai-jun, ZHANG Jing. The stability of a predator-prey diffusion model with Beddington-DeAngelis functional response [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 115-122.
[14] SONG Meng-meng, SHANG Hai-feng. Cauchy problem for nonlinear parabolic equation systems with initial data measures [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(10): 41-47.
[15] LI Yue-xia, ZHANG Li-na, ZHANG Xiao-jie. Bifurcation structures for the 2-D Lengyel-Epstein system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 74-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!