JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (12): 53-61.doi: 10.6040/j.issn.1671-9352.0.2018.262
Previous Articles Next Articles
FENG Xiao-zhou1, XU Min2, WANG Guo-hui3
CLC Number:
[1] WU J H. Coexistence states for cooperative model with diffusion[J]. Computers and Mathematical with Applications, 2002, 43(14):1277-1290. [2] ZHU C R, LAN K Q. Phase portraits, Hopf bifurcations and limit cycles of Leslie-Gower predator-prey systems with harvesting rates[J]. Discrete and Continuous Dynamical Systems: Series B, 2010, 14(1):289-306. [3] ZHANG N, CHEN F D, SU Q Q. Dynamic behaviors of a harvesting Leslie-Gower predator-prey model[J]. Discrete Dynamics in Nature and Society, 2011, 15(1):309-323. [4] ZHOU J, SHI J P. The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie-Gower predator-prey model with Holling-type II functional responses[J]. Journal of Mathematical Analysis and Applications, 2013, 405(2):618-630. [5] WU J H. Maximal attractor, stability and persistence for prey-predator model with saturation[J]. Mathematical and Computer Modelling, 1999, 30(11):7-16. [6] DAS T, MUKHERJEE R N, CHAUDHURI K S. Harvesting of a prey-predator fishery in the presence of toxicity[J]. Applied Mathematics Modeling, 2009, 33(5):2282-2292. [7] 霍海峰,姜慧敏,苏克所.霉素影响下的捕食-食饵模型最优控制问题[J].甘肃科学学报,2010,22(1):18-23. HUO Haifeng, JIANG Huimin, SU Kesuo. An optimal harvesting problem of a prey-predator model in the presence of toxieity[J]. Journal of Gansu Sciences, 2010, 22(1):18-23. [8] 沈莉莉,赵维锐.一类具有时滞和毒素的功能性反应的植物-食草动物系统性态分析[J].湖北民族学院学报(自然科学版),2010,28(1):201-208. SHEN Lili, ZHAO Weirui. Analysis of a plant-herbivore model with time-delay and tox in determined functional response[J]. Journal of Hubei University for Nationalities(Natural Science Edition), 2010, 28(1):201-208. [9] 范学良,雒志学,张宇功.毒素影响下具有阶段结构的食饵捕食种群系统生存研究[J].宁夏大学学报(自然科学版),2014,35(3):41-45. FAN Xueliang, LUO Zhixue, ZHANG Yugong. Analysis of prey-predator system dynamics behavior with a stage structure in the effects of toxicants[J]. Journal of Ningxia University(Natural Science Edition), 2014, 35(3):41-45. [10] 陈显,王稳地,陈晓平.毒素对阶段结构的单种群持续生存的影响[J].西南师范大学学报(自然科学版),2011,36(3):54-59. CHEN Xian, WANG Wendi, CHEN Xiaoping. Effects on survival of stage structural single population with toxicant[J]. Journal of Southwest China Normal University(Natural Science Edition), 2011, 36(3):54-59. [11] BEDDINGTON J R. Mutual interference between parasites or predators and its effect on searching efficiency[J]. J Animal Ecol, 1975, 44(1):331-340. [12] DEANGELIS D T, GOLDSTEIN R A. A model for trophic interaction[J]. Ecology, 1975, 56(2):881-892. [13] 叶其孝,李正元,王明新,等.反应扩散方程引论[M]. 北京: 科学出版社, 2013: 1-56. YE Qixiao, LI Zhengyuan, WANG Mingxin, et al. Introduction to reaction-diffusion equations[M]. Beijing: Science Press, 2013: 1-56. [14] 姜洪领.一类蜘蛛-昆虫模型平衡态正解的存在性[J].中山大学学报(自然科学版),2016,55(3):64-68. JIANG Hongling. The existence of steady-state positive solutions for a spider-insect model[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2016, 55(3):64-68. [15] RYU Kimun, AHN Inkyung. Positive solution for ratio-dependent predator-prey interaction systems[J]. Journal of Differential Equations, 2005, 218(1):117-135. [16] 袁海龙,李艳玲.一类捕食-食饵模型共存解的存在性与稳定性[J].陕西师范大学学报(自然科学版),2014,42(1):15-18. YUAN Hailong, LI Yanling. Coexistence of existence and stability of a predator-prey model[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2014, 42(1):15-18. [17] KO W, RYU K. Coexistence states of a predator-prey system with non-monotonic functional response[J]. Nonlinear Anal RWA, 2007, 8(3):769-786. [18] RUAN W H, FENG W. On the fixed point index and multiple steady-state solutions of reaction-diffusion systems[J]. Differential Integral Equations, 1995, 8(2):371-392. [19] YAMADA Y. Stability of steady states for prey-predator diffusion eduations with homogeneous dirichlet conditions[J]. SIAM J Math Anal, 1990, 21(2):327-345. |
[1] | LIU Hua, YE Yong, WEI Yu-mei, YANG Peng, MA Ming, YE Jian-hua, MA Ya-lei. Study of dynamic of a discrete host-parasitoid model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 30-38. |
[2] | ZHANG Dao-xiang, SUN Guang-xun, MA Yuan, CHEN Jin-qiong, ZHOU Wen. Hopf bifurcation and spatial patterns in a delayed diffusive predator-prey system with Holling-III functional response and linear harvesting effect [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 85-94. |
[3] | LI Cui-ping, GAO Xing-bao. A neural network for solving l1-norm problems with constraints [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 90-98. |
[4] | SONG Liang, FENG Jin-shun, CHENG Zheng-xing. Existence and stability for multiple gabor frames [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 17-24. |
[5] | BAI Bao-li, ZHANG Jian-gang, DU Wen-ju, YAN Hong-ming. Dynamic behavior analysis of a stochastic SIR epidemic model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 72-82. |
[6] | LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31. |
[7] | HUANG Lei-lei, SONG Xiao-qiu, LU Wei. On polynomial stability of linear discrete-time systems in Banach spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 36-41. |
[8] | ZHANG Dao-xiang, ZHAO Li-xian, HU Wei. Turing instability induced by cross-diffusion in a three-species food chain model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 88-97. |
[9] | WANG Chang-hong, WANG Lin-shan. Mean square exponential stability of memristor-based stochastic neural networks with S-type distributed delays [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(5): 130-135. |
[10] | XUE Wen-ping, JI Pei-sheng. On the HUR stability of a mixed functional equation deriving from AQC mappings in FFNLS [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 1-8. |
[11] | CAI Chao. An inverse problem of identifying the coefficient in a Kolmogorov type equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 127-134. |
[12] | SHI Xue-wei, JIA Jian-wen. Study on an SIR epidemic model with information variable and graded cure rate [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(3): 51-59. |
[13] | FU Juan, ZHANG Rui, WANG Cai-jun, ZHANG Jing. The stability of a predator-prey diffusion model with Beddington-DeAngelis functional response [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 115-122. |
[14] | WU Jing-yuan, SHI Rui-qing. Analysis of an SEQIHRS epidemic model with media coverage [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(1): 115-122. |
[15] | LIN Qing-teng, WEI Feng-ying. The stability of stochastic SIQS epidemic model with saturated incidences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(1): 128-134. |
|