JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (8): 17-24.doi: 10.6040/j.issn.1671-9352.0.2016.189

Previous Articles     Next Articles

Existence and stability for multiple gabor frames

SONG Liang1, FENG Jin-shun1, CHENG Zheng-xing2   

  1. 1. School of Mathematics and Statistics, Nanyang Institute of Technology, Nanyang 473004, Henan, China;
    2. School of Mathematics and Statistics, Xian Jiaotong University, Xian 710049, Shaanxi, China
  • Received:2016-04-28 Online:2017-08-20 Published:2017-08-03

Abstract: Since redundant frames are play very important role in signal processing and image processing, existence and perturbation for multiple Gabor frames are studied in this paper. The sufficient condition for the existence of multiple Gabor frames is proposed. It is shown that a function which is the generator of Gabor frames is also a generator of Gabor frames after it is perturbed. According to the frame stability criterion, we prove that a class of irregular Gabor frames are stable frames as well.

Key words: perturbation, gabor frame, frame generator, frame multiresolution analysis, stability

CLC Number: 

  • O174.2
[1] 曲长文, 何友, 刘卫华,等. 框架理论及应用[M]. 北京:国防工业出版社, 2009. QU Changwen, HE You, LIU Weihua, et al. Framework theory and application[M]. Beijing: National Defense Industry Press, 2009.
[2] DAUBECHIES I, HAN B, Ron A, SHEN Z. Framelets: MRA-based construction of wavelet frames[J]. Applied and Computational Harmonic Analysis, 2003, 14(1):1-46.
[3] BENEDETTO J, LI Shidong. The theorem of multiresolution anaysis frames and application to filter banks[J]. Applied and Computational Harmonic Analysis, 1998, 5(4):398-427.
[4] CHRISTENSENO. An introduction to frames and Riesz bases[M]. Boston: Birkhauser, 2003.
[5] SUN Wenchang. G-frames and g-Riesz bases[J]. Journal of Mathematical Analysis and Applications, 2006, 322(1):437-452.
[6] SUN Wenchang. Stability of g-frames[J]. Journal of Mathematical Analysis and Applications, 2007, 326(2):858-868.
[7] 何永滔. 紧支撑的最小能量框架[J]. 计算数学, 2011, 33(2):166-176. HE Yongtao. Compactly supported minimum energy frame[J]. Mathematica Numerica Sinica, 2011, 33(2):166-176.
[8] 杨守志,郑贤伟. L2(Rn)上的半正交多小波框架[J]. 中国科学(数学), 2014, 44(3):249-262. YANG Shouzhi, ZHENG Xianwei. Semi-orthogonal multiwavelet frames in L2(Rn)[J]. Science China(Mathematics), 2014, 44(3):249-262.
[9] 樊起斌,鲁大用.一类周期紧小波框架的构造[J]. 数学年刊, 2012, 33A(3):341-350. FAN Qibin, LU Dayong. Construction of a class of periodic tight wavelet frames[J]. Chinese Annals of Mathematics, 2012, 33A(3):341-350.
[10] 黄永东,李秋富. a进制最小能量小波框架的构造[J]. 中国科学(信息科学), 2013, 43(4):469-487. HUANG Yongdong, LI Qiufu. Characterzations of minimum-energy wavelet frames on intervals with arbitrary integer dilation factors[J]. Science China(Information Science), 2013, 43(4):469-487.
[11] 郭蔚,彭立中.多小波框架的构造理论[J].中国科学(数学), 2010, 40(10):1115-1128. GUO Wei, PENG Lizhong. The construct theory of multiwavelet frames[J]. Science China(Mathematics), 2010, 40(10):1115-1128.
[1] LIU Hua, YE Yong, WEI Yu-mei, YANG Peng, MA Ming, YE Jian-hua, MA Ya-lei. Study of dynamic of a discrete host-parasitoid model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 30-38.
[2] SONG Jia-jia, CAO Xiao-hong, DAI Lei. The judgement for the small compact perturbation of SVEP for upper triangular operator matrices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 61-67.
[3] BAI Bao-li, ZHANG Jian-gang, DU Wen-ju, YAN Hong-ming. Dynamic behavior analysis of a stochastic SIR epidemic model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 72-82.
[4] DAI Lei, CAO Xiao-hong. Property(z)and Weyl type theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 60-65.
[5] LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31.
[6] HUANG Lei-lei, SONG Xiao-qiu, LU Wei. On polynomial stability of linear discrete-time systems in Banach spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 36-41.
[7] KONG Ying-ying, CAO Xiao-hong, DAI Lei. Judgement of a-Weyls theorem and its perturbations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 77-83.
[8] ZHANG Dao-xiang, ZHAO Li-xian, HU Wei. Turing instability induced by cross-diffusion in a three-species food chain model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 88-97.
[9] DONG Jiong, CAO Xiao-hong. Weyls theorem for the cube of operator and compact perturbations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 15-21.
[10] ZHANG Wei, FU Yan-ling. New perturbation results and characterization on approximately dual g-frames in hilbert spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 49-56.
[11] WANG Chang-hong, WANG Lin-shan. Mean square exponential stability of memristor-based stochastic neural networks with S-type distributed delays [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(5): 130-135.
[12] XUE Wen-ping, JI Pei-sheng. On the HUR stability of a mixed functional equation deriving from AQC mappings in FFNLS [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 1-8.
[13] CAI Chao. An inverse problem of identifying the coefficient in a Kolmogorov type equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 127-134.
[14] SHI Xue-wei, JIA Jian-wen. Study on an SIR epidemic model with information variable and graded cure rate [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(3): 51-59.
[15] REN Xue-fang, ZHANG Ling. Perturbation theorems of inverse P-sets and perturbation-based data mining [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 54-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!