JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (4): 1-8.doi: 10.6040/j.issn.1671-9352.0.2015.263
XUE Wen-ping, JI Pei-sheng*
CLC Number:
[1] ULAM S M. A collection of mathematical problems[M]. New York: Wiley, 1960. [2] HYERS D H. On the stability of the linear functional equation[J]. Proc Natl Acad Sci, 1941, 27:222-224. [3] RASSIAS Th M. On the stability of the linear mapping in Banach spaces[J]. Proc Amer Math Soc, 1978, 72:297-300. [4] ACZEL J, DHOMBRES J. Functional equations in several variables[M]. Cambridge: Cambridge Univ, 1989. [5] JUNG S M. Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis[M]. New York: Springer, 2011. [6] PARK C, LEE J R. Approximation of an AQCQ-functional equation and its application[J]. Austr J Math Anal Appl, 2011, 8(1):1-39. [7] 卢海宁,纪培胜,薛海燕. Cauchy-Jensen方程的模糊稳定性[J]. 青岛大学学报(自然科学版),2013,26(3):6-10. LU Haining, JI Peisheng, XUE Haiyan. The fuzzy stability of Cauchy-Jensen functional equation[J]. Journal of Qingdao University(Natural Science Edition), 2013, 26(3):6-10. [8] 纪培胜,赵英姿. Jensen-二次函数方程及其Hyers-Ulam稳定性[J]. 数学学报:中文版,2015,58(2):251-260. JI Peisheng, ZHAO Yingzi. Jensen-Quadratic functional equation and its Hyers-Ulam stability[J]. Acta Mathematica Sinica Chinese Series, 2015, 58(2):251-260. [9] SADEQI I, MORADLOU F, SALEHI M. On approximate Cauchy equation in Felbins type fuzzy normed linear spaces[J]. Iran J Fuzzy Systems, 2013, 10(3):51-63. [10] FRIDOUN MORADLOU, SABER REZACE, HDAR SADEQI. Approximate quadratic functional equation in Felbins type normed linear spaces[J]. Hacettepe J Math Statistics, 2013, 42(5):501-516. [11] ESKANDANI G Z, RASSIAS J M. Approximation of a general cubic functional equation in Felbins type fuzzy normed linear spaces[J]. Results Math, 2014, 66(1):113-123. [12] WANG Liguang. On the stability of a mixed function equation deriving from additive,quadratic and cubic mappings[J]. Acta Mathematica Sinica, English Series Jun, 2014, 30(6):1033-1049. [13] FELBIN C. Finite dimensional fuzzy normed linear spaces[J]. Fuzzy Set and Systems, 1992, 48(2):239-248. [14] XIAO J, ZHU X. Topological degree theory and fixed point theorems in fuzzy normed space[J]. Fuzzy Sets Syst, 2004, 147(1):437-452. [15] SOON-MO JUNG. A fixed point approach to the stability of a volterra integral equation[J/OL]. Fixed Point Theory and Applications, Volume, 2007, Article ID 57064, 9pages. doi:10.1155/2007/57064.[2015-03-01]. http://www.Fixed pointtheory and applications.com/content/2007/1/057064. |
[1] | JI Pei-sheng, LIU Rong-rong. The Hyers-Ulam-Rassias stability of a mixed quintic functional equation of two variables [J]. J4, 2013, 48(10): 9-13. |
|