JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (4): 104-110.doi: 10.6040/j.issn.1671-9352.0.2022.268
ZHAO Song, KANG Di, XU Xiu-juan*
CLC Number:
[1] XIE Suying, FANG Ainong. Global higher integrability for the gradient of very weak solutions of a class of nonlinear elliptic systems[J]. Nonlinear Analysis, 2003, 53(7/8):1127-1147. [2] ZHENG Shenzhou, ZHENG Xueliang, FENG Zhaosheng. Optimal regularity for A-harmonic type equations under the natural growth[J]. Discrete and Continuous Dynamical Systems: Series B, 2011, 16(2):669-685. [3] ZHENG Shenzhou, ZHENG Xueliang, FENG Zhaosheng. Regularity for a class of degenerate elliptic equations with discontinuous coefficients under natural growth[J]. Journal of Mathematical Analysis and Applications, 2008, 346(2):359-373. [4] BECK L. Boundary regularity for elliptic systems under a natural growth condition[J]. Annali Di Matematica Pura Ed Applicata, 2011, 190(4):553-588. [5] 张雅楠, 闫硕, 佟玉霞. 自然增长条件下的非齐次A-调和方程弱解的梯度估计[J]. 数学物理学报, 2020, 40(2):379-394. ZHANG Yanan, YAN Shuo, TONG Yuxia. Gradient estimates for weak solutions to non-homogeneous A-harmonic equations under natural growth[J]. Acta Mathematica Scientia, 2020, 40(2):379-394. [6] LI G B, MARTIO O. Local and global integrability of gradients in obstacle problems[J]. Annales Academiae Scientiarum Fennicae Mathematica, 1994, 19(1):25-34. [7] 周树清, 胡振华, 彭冬云. 一类A-调和方程的障碍问题的很弱解的全局正则性[J]. 数学物理学报(A辑), 2014, 34(1):27-38. ZHOU Shuqing, HU Zhenhua, PENG Dongyun. Global regularity for very weak solutions to obstacle problems corresponding to a class of A-harmonic equations[J]. Acta Mathematica Scientia(Ser. A), 2014, 34(1):27-38. [8] GEHRING F W. The Lp-integrability of the partial derivatives of a quasiconformal mapping[J]. Acta Mathematica, 1973, 130:265-277. [9] GIAQUINTA M. Multiple integrals in the calculus of variations and nonlinear elliptic systems(AM-105)[M]. Princeton: Princeton University Press, 2016: 119-164. [10] ADAMS R A, FOURNIER J. Sobolev spaces[M]. Boston: Academic Press, 2003: 81-134. [11] IWANIEC T, MARTIN G. Geometric function theory and nonlinear analysis[M]. Oxford: Clarendon Press, 2001: 354-369. |
|