JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (6): 46-56.doi: 10.6040/j.issn.1671-9352.0.2022.520
Previous Articles Next Articles
Yanmin GUO(),Song ZHAO,Yuxia TONG*()
CLC Number:
1 |
ZHIKOV V V . Averaging of functionals of the calculus of variations and elasticity theory[J]. Mathematics of the USSR-Izvestiya, 1987, 29 (1): 33- 66.
doi: 10.1070/IM1987v029n01ABEH000958 |
2 |
COLOMBO M , MINGIONE G . Calderón-Zygmund estimates and non-uniformly elliptic operators[J]. Journal of Functional Analysis, 2016, 270 (4): 1416- 1478.
doi: 10.1016/j.jfa.2015.06.022 |
3 |
LIANG Shuang , ZHENG Shenzhou . Calderón-Zygmund estimates for asymptotically regular non-uniformly elliptic equations[J]. Journal of Mathematical Analysis and Applications, 2020, 484 (2): 123749.
doi: 10.1016/j.jmaa.2019.123749 |
4 |
BYUN S S , CHO Y , OH J . Gradient estimates for double phase problems with irregular obstacles[J]. Nonlinear Analysis: Theory, Methods and Applications, 2018, 177, 169- 185.
doi: 10.1016/j.na.2018.02.008 |
5 | BYUN S S , OH J . Global gradient estimates for non-uniformly elliptic equations[J]. Calculus of Variations and Partial Differential Equations, 2017, 56 (2): 1- 36. |
6 |
ZHANG Xiaolin , ZHENG Shenzhou . Besov regularity for the gradients of solutions to non-uniformly elliptic obstacle problems[J]. Journal of Mathematical Analysis and Applications, 2021, 504 (2): 125402.
doi: 10.1016/j.jmaa.2021.125402 |
7 |
WANG Lihe , YAO Fengping . Global estimates for non-uniformly nonlinear elliptic equations in a convex domain[J]. Journal of Mathematical Analysis and Applications, 2016, 439 (1): 307- 322.
doi: 10.1016/j.jmaa.2016.02.062 |
8 | STEIN E , MURPHY T . Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[M]. Princeton: Princeton University Press, 1993: 140- 150. |
9 | DIBENEDETTO E , MANFREDI J . On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems[J]. American Journal of Mathematics, 1993, 115 (6): 1107- 1134. |
10 |
DIENING L , KAPLICKÝ P , SCHWARZACHER S . BMO estimates for the p-Laplacian[J]. Nonlinear Analysis: Theory, Methods and Applications, 2012, 75 (2): 637- 650.
doi: 10.1016/j.na.2011.08.065 |
11 |
YU Haiyan , ZHENG Shenzhou . BMO estimate to A-harmonic systems with discontinuous coefficients[J]. Nonlinear Analysis: Real World Applications, 2015, 26, 64- 74.
doi: 10.1016/j.nonrwa.2015.05.003 |
12 | TIAN Qiaoyu , ZHANG Shengzhi , XU Yonglin , et al. BMO estimates for quasilinear elliptic equations with BMO coefficients[J]. Journal of Mathematical Research with Applications, 2016, 36 (6): 673- 681. |
13 |
YAO Fengping , ZHANG Chao , ZHOU Shulin . Global regularity estimates for a class of quasilinear elliptic equations in the whole space[J]. Nonlinear Analysis: Theory, Methods and Applications, 2020, 194, 111307.
doi: 10.1016/j.na.2018.07.004 |
14 | GIAQUINTA M , GIUSTI E . On the regularity of the minima of variational integrals[J]. Acta Mathematica, 1982, 148 (1): 31- 46. |
15 |
BYUN S S , LEE H S . Gradient estimates for non-uniformly elliptic problems with BMO nonlinearity[J]. Journal of Mathematical Analysis and Applications, 2023, 520 (1): 126894.
doi: 10.1016/j.jmaa.2022.126894 |
16 |
COLOMBO M , MINGIONE G . Regularity for double phase variational problems[J]. Archive for Rational Mechanics and Analysis, 2015, 215 (2): 443- 496.
doi: 10.1007/s00205-014-0785-2 |
17 | LIEBERMAN G M . The natural generalization of the natural conditions of ladyzhenskaya and Ural'tseva for elliptic equations[J]. Communications in Partial Differential Equations, 1991, 16 (23): 311- 361. |
[1] | ZHAO Song, KANG Di, XU Xiu-juan. Regularity of weak solutions for obstacle problems with natural growth [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(4): 104-110. |
[2] | XUE Ting-ting, XU Yan, LIU Xiao-ping. Existence of nontrivial weak solutions for fractional boundary value problems with variable coefficients [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(12): 45-51. |
[3] | ZHANG Ya-nan, YANG Ya-qi, TONG Yu-xia. Local gradient estimates for weak solutions of obstacle problems to a class of A-harmonic equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(6): 76-83. |
[4] | . Regularity for solutions of elliptic obstacle problems with subcritical growth [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 57-63. |
[5] | ZHEN Wei-wei, ZENG Jian, REN Jian-long. Time dependent parabolic inverse source problem based on variational theory [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 61-71. |
[6] | JIANG Jing, GAO Qing-ling, ZHANG Ke-yu. Existence of weak solutions for a second order Dirichlet boundary value problem on time scales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 99-103. |
[7] | LI Feng-ping, CHEN Guang-xia. Regularity criteria for weak solutions to the 3D magneto-micropolar fluid equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(05): 60-67. |
[8] | BIAN Dong-fen, YUAN Bao-quan*. On the nonexistence of global weak solutions to the compressible MHD equations [J]. J4, 2011, 46(4): 42-48. |
[9] | LI Juan. Local integrability for very weak solutions of nonhomogeneous obstacle problems [J]. J4, 2010, 45(8): 66-70. |
[10] | HU Mo-Yin. Multiplicity results for a class of quasi-linear Neumann problems [J]. J4, 2009, 44(10): 39-42. |
[11] | XIAO Hua . Continuous dependence of the solution of multidimensional reflected backward stochastic differential equations on the parameters [J]. J4, 2007, 42(2): 68-71 . |
|