JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (8): 57-62.doi: 10.6040/j.issn.1671-9352.0.2022.328
Previous Articles Next Articles
Yuyuan SU(),Zongtian WEI,Yan WANG
CLC Number:
1 | BONDY J A , MURTY U S R . Graph theory[M]. New York: Springer, 2008. |
2 | COZZENS M , WU S S Y . Edge-neighbor-integrity of trees[J]. Australasian Journal of Combinatorics, 1996, 10, 163- 174. |
3 |
ZHANG S , WANG Z . Scattering number in graphs[J]. Networks, 2001, 37 (2): 102- 106.
doi: 10.1002/1097-0037(200103)37:2<102::AID-NET5>3.0.CO;2-S |
4 | WEI Z , LI Y , ZHANG J . Edge-neighbor-scattering number of graphs[J]. ARS Combinatoria, 2007, 85 (10): 417- 426. |
5 | 贺丹. 图的距离边标号及其相关问题[D]. 南京: 东南大学, 2015. |
HE Dan. On edge-labeling with distance of graphs and some related problems[D]. Nanjing: Southeast University, 2015. | |
6 | 魏宗田, 刘勇, 杨威, 等. 网络抗毁性[M]. 西安: 西安交通大学出版社, 2015. |
WEI Zongtian , LIU Yong , YANG Wei , et al. Network invulnerability[M]. Xi'an: Xi'an Jiaotong University Press, 2015. | |
7 | 杨玉成. 图的边邻域坚韧度研究[D]. 西安: 西安建筑科技大学, 2019. |
YANG Yucheng. A study of edge neighbor toughness of graphs[D]. Xi'an: Xi'an University of Architecture and Technology, 2019. | |
8 | 杨雪. 图的广义p-邻域抗毁性参数研究[D]. 西安: 西安建筑科技大学, 2021. |
YANG Xue. A study of the general p-neighbor invulnerability parameters of graphs[D]. Xi'an: Xi'an University of Architecture and Technology, 2021. |
[1] | NA Yujia, XIE Jun, YANG Haiyang, XU Xinying. Context fusion-based knowledge graph completion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(9): 71-80. |
[2] | ZHU Lina, LI Jingwen, SUN Shuai. L(2,1)- edge coloring algorithm for several kinds of composite graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 63-72. |
[3] | Le CHANG,Zongtian WEI. Graph N[S]-T reconstruction based on neighbor connectivity optimization [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(6): 40-45, 76. |
[4] | Huiling YIN,Jingrong CHEN,Xiaoyan SU. The k-path vertex cover in some products graphs of star graph and bipartite graph [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(6): 18-24, 39. |
[5] | HAN Hui, LIU Yutong, YAO Haiyuan. Recursive solving of di-forcing polynomials for ladder graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(11): 127-134. |
[6] | WANG Ligong, YU Zhiming, ZHOU Feng, TAO Lijie, XING Luqi. Two kinds of integral graphs based on complete graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(11): 155-159. |
[7] | WANG Ranran, WEN Fei, ZHANG Shucheng. On the generalized characteristic polynomial of a family of graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(11): 165-174. |
[8] | LAN Linyu, LI Jingwen, ZHANG Shucheng, ZHANG Lijing, SHEN Huayu. Vertex reducibletotal labeling algorithm for graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(11): 135-146. |
[9] | LI Xin-yu, FAN Hui, LIU Jing-lei. Robust clustering based on adaptive graph regularization and low-rank matrix decomposition [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(8): 21-38. |
[10] | LI Ning, GU Hai-bo, MA Li-na. Existence of solutions for boundary value problems of a class of nonlinear Caputo type sequential fractional differential equations on star graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(7): 22-34. |
[11] | YANG Teng-fei, XU Chang-qing. Total colorings of 3-degenerate graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(6): 61-63. |
[12] | WU Chuan-shu, ZHAO Hai-xing, DENG Bo. Degree-based graph entropy on graph operations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(6): 44-53. |
[13] | JIN Ming, CHEN Jin-kun. Optimal scale reduction based on graph theory in consistent multi-scale decision tables [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(6): 74-83. |
[14] | WENG Ting-ting, WEI Zong-tian. Weighted neighbor toughness of graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(6): 36-43. |
[15] | DENG Zi-Jian, LIU Bin, HUO Bo-feng. Connectivity and Hamiltonian properties of second order circuit graphs of a class of uniform matroid [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(5): 92-96. |
|