JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (10): 67-74.doi: 10.6040/j.issn.1671-9352.0.2023.157

Previous Articles     Next Articles

Exponential stability of reaction-diffusion Cohen-Grossberg neural networks with Dirichlet boundary conditions

Lei LI1,2(),Yongsheng YE2,*()   

  1. 1. School of Mathematics, Hohai University, Nanjing 211100, Jiangsu, China
    2. College of Mathematical Sciences, Huaibei Normal University, Huaibei 235000, Anhui, China
  • Received:2023-04-16 Online:2023-10-20 Published:2023-10-17
  • Contact: Yongsheng YE E-mail:llei0910@163.com;yeys@chnu.edu.cn

Abstract:

By constructing a suitable Lyapunov functional and combining it with mathematical analysis techniques, we discuss the exponential stability of impulsive time delay reaction-diffusion Cohen-Grossberg neural networks with Dirichlet boundary conditions and Markovian switching. Some sufficient criteria for exponential stability of neural networks are obtained by using the inequality technique and stochastic analysis theory. Finally, an example is given to verify the validity of the results.

Key words: Markovian switching, impulsive, time delay, reaction-diffusion neural network, exponential stability

CLC Number: 

  • O175

Fig.1

Trajectory simulation results of system (3)"

1 CHUA L O , YANG L . Cellular neural networks: applications[J]. IEEE Transactions on Biomedical Circuits and Systems, 1988, 35 (10): 1273- 1290.
doi: 10.1109/31.7601
2 ZENG Z G , WANG J . Design and analysis of high-capacity associative memories based on a class of discrete-time recurrent neural networks[J]. IEEE Transactions on Systems Man Cybernetics, Part B: Cybernetics, 2008, 38 (6): 1525- 1536.
doi: 10.1109/TSMCB.2008.927717
3 LIU Q S , WANG J . A projection neural network for constrained quadratic minimax optimization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26 (11): 2891- 2900.
doi: 10.1109/TNNLS.2015.2425301
4 CAO J D , WANG J . Global asymptotic stability of a general class of recurrent neural networks with time-varying delays[J]. IEEE Transactions on Circuits and Systems—I fundamental Theory Applications, 2003, 50 (1): 34- 44.
doi: 10.1109/TCSI.2002.807494
5 ZENG Z G , WANG J , LIAO X X . Global exponential stability of a general class of recurrent neural networks with time-varying delays[J]. IEEE Transactions on Systems Man Cybernetics, Part B: Cybernetics, 2003, 50 (10): 1353- 1358.
6 LIU P , ZENG Z G , WANG J . Multiple Mittag-Leffler stability of fractional-order recurrent neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47 (8): 2279- 2288.
doi: 10.1109/TSMC.2017.2651059
7 WANG J L , QIN Z , WU H N , et al. Analysis and pinning control for output synchronization and H output synchronization of multi-weighted complex networks[J]. IEEE Transactions on Cybernetics, 2019, 49 (4): 1314- 1326.
doi: 10.1109/TCYB.2018.2799969
8 WANG J L , XU M , WU H N , et al. Passivity analysis and pinning control of multi-weighted complex dynamical networks[J]. IEEE Transactions on Network Science and Engineering, 2019, 6 (1): 60- 73.
doi: 10.1109/TNSE.2017.2771267
9 WANG J L , WU H N , HUANG T W , et al. Passivity and output synchronization of complex dynamical networks with fixed and adaptive coupling strength[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29 (2): 364- 376.
doi: 10.1109/TNNLS.2016.2627083
10 HU C , JIANG H , TENG Z . Impulsive control and synchronization for delayed neural networks with reaction-diffusion terms[J]. IEEE Transactions on Neural Networks and Learning Systems, 2010, 21 (1): 67- 81.
doi: 10.1109/TNN.2009.2034318
11 CHEN W H , LUO S , ZHENG W X . Impulsive synchronization of reaction-diffusion neural networks with mixed delays and its application to image encryption[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27 (12): 2696- 2710.
doi: 10.1109/TNNLS.2015.2512849
12 ZHANG H , ZENG Z , HAN Q L . Synchronization of multiple reaction-diffusion neural networks with heterogeneous and unbounded time-varying delays[J]. IEEE Transactions on Cybernetics, 2019, 49 (8): 2980- 2991.
doi: 10.1109/TCYB.2018.2837090
13 LV Y , HU C , YU J , et al. Edge-based fractional order adaptive strategies for synchronization of fractional-order coupled networks with reaction-diffusion terms[J]. IEEE Transactions on Cybernetics, 2020, 50 (4): 1582- 1594.
doi: 10.1109/TCYB.2018.2879935
14 TU Z , DING N , LI L , et al. Adaptive synchronization of memristive neural networks with time-varying delays and reaction-diffusion term[J]. Applied Mathematics and Computation, 2017, 311, 118- 128.
doi: 10.1016/j.amc.2017.05.005
15 EVANS L C . Partial differential equation[M]. 2nd ed. Berkeley: American Mathematical Society, 1998.
16 CAO Y Y , CAO Y T , WEN S P , et al. Passivity analysis of delayed reaction-diffusion memristor-based neural networks[J]. Neural Networks, 2019, 109, 159- 167.
doi: 10.1016/j.neunet.2018.10.004
17 LI R X , CAO J D . Stability analysis of reaction-diffusion uncertain memristive neural networks with time-varying delays and leakage term[J]. Applied Mathematics and Computation, 2016, 278, 54- 69.
doi: 10.1016/j.amc.2016.01.016
18 WU H Q , ZHANG X W , LI R X , et al. Adaptive anti-synchronization and H anti-synchronization for memristive neural networks with mixed time delays and reaction-diffusion terms[J]. Neurocomputing, 2015, 168, 726- 740.
doi: 10.1016/j.neucom.2015.05.051
19 SHI G D , MA Q . Synchronization of stochastic Markovian jump neural networks with reaction-diffusion terms[J]. Neurocomputing, 2012, 77 (1): 275- 280.
doi: 10.1016/j.neucom.2011.08.024
20 ZHU Q X . pth moment exponential stability of impulsive stochastic functional differential equations with Markovian switching[J]. Journal of the Franklin Institute, 2014, 351 (7): 3965- 3986.
doi: 10.1016/j.jfranklin.2014.04.001
21 ZHU Q X . Razumikhin-type theorem for stochastic functional differential equations with Lévy noise and Markov switching[J]. International Journal of Control, 2017, 90 (8): 1703- 1712.
doi: 10.1080/00207179.2016.1219069
22 ZHANG Y , LUO Q . Novel stability criteria for impulsive delayed reaction-diffusion Cohen-Grossberg neural networks via Hardy-Poincarè inequality[J]. Chaos, Solitons & Fractals, 2012, 45 (8): 1033- 1040.
23 LI X D , CAO J D . An impulsive delay inequality involving unbounded time varying delay and applications[J]. IEEE Transactions on Automatic Control, 2017, 62 (7): 3618- 3625.
doi: 10.1109/TAC.2017.2669580
24 WANG X , LI C D , HUANG T W . Impulsive exponential synchronization of randomly coupled neural networks with Markovian jumping and mixed model-dependent time delays[J]. Neural Networks, 2014, 60, 25- 32.
doi: 10.1016/j.neunet.2014.07.008
25 LU J G . Global exponential stability and periodicity of reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions[J]. Chaos, Solitons and Fractals, 2008, 35 (1): 116- 125.
doi: 10.1016/j.chaos.2007.05.002
[1] Yadi WANG,Hailong YUAN. Hopf bifurcation analysis in the Lengyel-Epstein reaction diffusion system with time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 92-103.
[2] Li LI,He YANG. Existence of mild solutions for the nonlocal problem of second-order impulsive evolution equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(6): 57-67.
[3] Pan SUN,Xuping ZHANG. Continuous dependence of solution for impulsive evolution equations with infinite delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(6): 77-83, 91.
[4] Gaihui GUO,Jingjing WANG,Wangrui LI. Hopf bifurcation of a vegetation-water reaction-diffusion model with time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 32-42, 53.
[5] PANG Yu-ting, ZHAO Dong-xia, BAO Fang-xia. Stability of the bidirectional ring networks with multiple time delays and multiple parameters [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(8): 103-110.
[6] WEI Li-xiang, ZHANG Jian-gang, NAN Meng-ran, ZHANG Mei-jiao. Stability and Hopf bifurcation of a flux neuron model with time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(5): 12-22.
[7] ZHANG Shen-gui. Applications of variational method to impulsive differential systems with variable exponent [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 22-28.
[8] JI Jie. Eigenvalues asymptotic formula and trace formula for a class of impulsive Sturm-Liouville operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 49-56.
[9] DAI Li-hua, HUI Yuan-xian. Almost automorphic solutions for shunting inhibitory cellular neural networks with leakage delays on time scales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 97-108.
[10] ZHANG Sha, JIA Mei, LI Yan, LI Xiao-chen. Existence and uniqueness of solutions for three point boundary value problems of impulsive fractional differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 66-72.
[11] RAO Xu-li, HUANG Chuan, LIN Hui. Novel USRP-based fast channel handoff scheme in wireless LAN [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 49-53.
[12] WANG Chang-hong, WANG Lin-shan. Mean square exponential stability of memristor-based stochastic neural networks with S-type distributed delays [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(5): 130-135.
[13] ZHANG Chun-yan, HAO Sheng-nan, FENG Li-chao. Stochastic suppression on explosive solutions of a class of nonlinear impulsive differential systems by noise [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 29-36.
[14] LI Xiao-yan, XU Man. Existence and multiplicity of nontrivial solutions of Dirichlet problems for second-order impulsive differential equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 29-35.
[15] XU Man. Existence of positive periodic solutions of impulsive functional differential equations with two parameters [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(06): 69-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LUO Si-te, LU Li-qian, CUI Ruo-fei, ZHOU Wei-wei, LI Zeng-yong*. Monte-Carlo simulation of photons transmission at alcohol wavelength in  skin tissue and design of fiber optic probe[J]. J4, 2013, 48(1): 46 -50 .
[2] TIAN Xue-gang, WANG Shao-ying. Solutions to the operator equation AXB=C[J]. J4, 2010, 45(6): 74 -80 .
[3] HUO Yu-hong, JI Quan-bao. Synchronization analysis of oscillatory activities in a biological cell system[J]. J4, 2010, 45(6): 105 -110 .
[4] YANG Lun, XU Zheng-gang, WANG Hui*, CHEN Qi-mei, CHEN Wei, HU Yan-xia, SHI Yuan, ZHU Hong-lei, ZENG Yong-qing*. Silence of PID1 gene expression using RNA interference in C2C12 cell line[J]. J4, 2013, 48(1): 36 -42 .
[5] LIU Ting-ting, CHEN Zhi-yong, LI Xiao-qin*, YANG Wen-zhi. The Berry-Esseen bound for the sequence of #br# negatively associated random variables#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 101 -106 .
[6] LIU Yan-ping, WU Qun-ying. Almost sure limit theorems for the maximum of Gaussian sequences#br# with optimized weight[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 50 -53 .
[7] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .
[8] YANG Yong-wei1, 2, HE Peng-fei2, LI Yi-jun2,3. On strict filters of BL-algebras#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 63 -67 .
[9] LI Min1,2, LI Qi-qiang1. Observer-based sliding mode control of uncertain singular time-delay systems#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 37 -42 .
[10] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .