JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (10): 97-105.doi: 10.6040/j.issn.1671-9352.0.2022.633

Previous Articles     Next Articles

Existence of traveling wave solutions for a diffusive predator-prey model

Hang ZHANG(),Yujuan JIAO*(),Jinmiao YANG   

  1. College of Mathematics and Computer Science, Northwest Minzu University, Lanzhou 730030, Gansu, China
  • Received:2022-11-14 Online:2023-10-20 Published:2023-10-17
  • Contact: Yujuan JIAO E-mail:y211530520@stu.xbmu.edu.cn;jsjyj@xbmu.edu.cn

Abstract:

In this paper, we discuss the existence of traveling wave solutions for a diffusive predator-prey model. Firstly, using linearization method, we prove non-existence of traveling wave solutions for the model with c < c*. Secondly, we establish the existence of weak traveling wave solutions with cc* by applying upper and lower solution method and Schauder's fixed point theorem. Moreover, utilizing Lyapunov function and LaSalle's invariance principle, we obtain that the weak traveling wave solutions for the model are traveling wave solutions under the suitable conditions. Finally, the numerical experiments support the validity of our theoretical results.

Key words: traveling wave solution, predator-prey model, upper and lower solution, Schauder's fixed point theorem, Lyapunov function

CLC Number: 

  • O175.26

Table 1

Parameter value of System (1.2)"

参数 r1 r2 η1 η2 c1 c2 d K1 K2 m
取值 0.01 0.10 0.15 0.5 0.5 0.5 0.4 2 2 0.5

Table 2

Parameter value of System (1.3)"

参数 r1 r2 η1 η2 c1 c2 d K1 K2 m c
取值 0.01 0.10 0.15 0.5 0.5 0.5 0.4 2 2 0.5 2

Fig.1

Population density changes of three species in System (1.3)"

Fig.2

Population density changes of three species in System (1.2)"

1 DUNBAR S R . Travelling wave solutions of diffusive Lotka-Volterra equations[J]. Journal of Mathematical Biology, 1983, 17 (1): 11- 32.
2 WANG Chinghui , FU Shengchen . Traveling wave solutions to diffusive Holling-Tanner predator-prey models[J]. Discrete and Continuous Dynamical Systems: Series B, 2021, 26 (4): 2239- 2255.
doi: 10.3934/dcdsb.2021007
3 CHEN Chiunchuan , HUNG Lichang . Nonexistence of traveling wave solutions, exact and semi-exact traveling wave solutions for diffusive Lotka-Volterra systems of three competing species[J]. Communications on Pure and Applied Analysis, 2016, 15 (4): 1451- 1469.
doi: 10.3934/cpaa.2016.15.1451
4 LIN Guo , RUAN Shigui . Traveling wave solutions for delayed reaction diffusion systems and applications to diffusive Lotka-Volterra competition models with distributed delays[J]. Journal Dynamics and Differential Equations, 2014, 26 (3): 583- 605.
doi: 10.1007/s10884-014-9355-4
5 刘慧, 胡海军. 一类Lotka-Volterra合作系统行波解的存在性[J]. 数学理论与应用, 2018, 38 (3/4): 33- 42.
LIU Hui , HU Haijun . Existence of traveling wave solutions for a class of cooperative Lotka-Volterra system[J]. Mathematical Theory and Applications, 2018, 38 (3/4): 33- 42.
6 SAHA S , SAMANTA G . Modelling of a two prey and one predator system with switching effect[J]. Computational and Mathematical Biophysics, 2021, 9 (1): 90- 113.
doi: 10.1515/cmb-2020-0120
7 TANG Lu , CHEN Shanpeng . Traveling wave solutions for the diffusive Lotka-Volterra equations with boundary problems[J]. Applied Mathematics and Computation, 2022, 413, 126599.
doi: 10.1016/j.amc.2021.126599
8 张锦炎, 冯贝叶. 常微分方程几何理论与分支问题[M]. 北京: 北京大学出版社, 2000.
ZHANG Jinyan , FENG Beiye . Geometric theory of ordinary differential equations and bifurcation problem[M]. Beijing: Peking University Press, 2000.
9 AI Shangbing , DU Yihong , PENG Rui . Traveling waves for a generalized Holling-Tanner predator-prey model[J]. Journal of Differential Equations, 2017, 263 (11): 7782- 7814.
[1] SUN Xiao-yue. Multiplicity of positive solutions for elastic beam equations under inhomogeneous boundary conditions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(4): 65-73.
[2] DING Huan-huan, HE Xing-yue. Eigenvalue problem of a coupled system of singular k-Hessian equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(3): 55-63.
[3] Qian CAO,Yanling LI,Weihua SHAN. Dynamics of a reaction-diffusion predator-prey model incorporating prey refuge and fear effect [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 43-53.
[4] SUN Chun-jie, ZHANG Cun-hua. Stability and Turing instability in the diffusive Beddington-DeAngelis-Tanner predator-prey model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(9): 83-90.
[5] HAN Zhuo-ru, LI Shan-bing. Positive solutions of predator-prey model with spatial heterogeneity and hunting cooperation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(7): 35-42.
[6] WANG Jing, FU Sheng-mao. Effect of fear factor on a predator-prey model with defense mechanish [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(3): 121-126.
[7] LI Hai-xia. Qualitative analysis of a diffusive predator-prey model with density dependence [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(9): 54-61.
[8] WANG Fei, YANG Ya-li, JIN Ying-ji, CAO Shu-miao. Study on nonlinear HIV/AIDS model with two infection stages treatment and incidence rate [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 67-73.
[9] MA Xia, YAO Mei-ping. Existence of traveling wave solutions for hantavirus transmission model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 48-52.
[10] ZHU Wen-wen. Existence of multiple of solutions of first order multi-point boundary value problem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 42-48.
[11] WANG Chang-hong, WANG Lin-shan. Mean square exponential stability of memristor-based stochastic neural networks with S-type distributed delays [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(5): 130-135.
[12] ZHU Wen-wen. Existence and multiplicity of positive solutions of first order periodic boundary value problems with parameter [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 36-41.
[13] FU Juan, ZHANG Rui, WANG Cai-jun, ZHANG Jing. The stability of a predator-prey diffusion model with Beddington-DeAngelis functional response [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 115-122.
[14] MA Lu-yi. The Ambrosetti-Prodi type results of the nonlinear second-order Neumann boundary value problem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(03): 62-66.
[15] ZHANG Qiu-hua, LIU Li-bin, ZHOU Kai. Existence of traveling wave solutions in delayed nonlocal diffusive Lotka-Volterra competitive system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(01): 90-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .
[2] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[3] DONG Li-hong1,2, GUO Shuang-jian1. The fundamental theorem for weak Hopf module in  Yetter-Drinfeld module categories[J]. J4, 2013, 48(2): 20 -22 .
[4] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .
[5] YANG Yong-wei1, 2, HE Peng-fei2, LI Yi-jun2,3. On strict filters of BL-algebras#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 63 -67 .
[6] LI Min1,2, LI Qi-qiang1. Observer-based sliding mode control of uncertain singular time-delay systems#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 37 -42 .
[7] YANG Lun, XU Zheng-gang, WANG Hui*, CHEN Qi-mei, CHEN Wei, HU Yan-xia, SHI Yuan, ZHU Hong-lei, ZENG Yong-qing*. Silence of PID1 gene expression using RNA interference in C2C12 cell line[J]. J4, 2013, 48(1): 36 -42 .
[8] LIU Ting-ting, CHEN Zhi-yong, LI Xiao-qin*, YANG Wen-zhi. The Berry-Esseen bound for the sequence of #br# negatively associated random variables#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 101 -106 .
[9] LIU Yan-ping, WU Qun-ying. Almost sure limit theorems for the maximum of Gaussian sequences#br# with optimized weight[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 50 -53 .
[10] LUO Si-te, LU Li-qian, CUI Ruo-fei, ZHOU Wei-wei, LI Zeng-yong*. Monte-Carlo simulation of photons transmission at alcohol wavelength in  skin tissue and design of fiber optic probe[J]. J4, 2013, 48(1): 46 -50 .