JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (12): 63-76.doi: 10.6040/j.issn.1671-9352.4.2022.5723

Previous Articles     Next Articles

Practical application of property-oriented concepts in adaptive assessment of skills

Qiuhong HE1,3(),Jinjin LI2,4,*(),Yinfeng ZHOU2,Jing WU5   

  1. 1. School of Computer Science, Minnan Normal University, Zhangzhou 363000, Fujian, China
    2. School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, Fujian, China
    3. Fujian Provincial University Key Laboratory of Data Science and Intelligent Application, Minnan Normal University, Zhangzhou 363000, Fujian, China
    4. Fujian Key Laboratory of Granular Computing and Application, Minnan Normal University, Zhangzhou 363000, Fujian, China
    5. Affiliated High School of Minnan Normal University(Zhangzhou No.2 Middle School), Zhangzhou 363000, Fujian, China
  • Received:2022-03-31 Online:2023-12-20 Published:2023-12-19
  • Contact: Jinjin LI E-mail:hqh1129@mnnu.edu.cn;jinjinlimnu@126.com

Abstract:

Certain concepts (X, B) can be obtained via the combination of skill multimaps with property-oriented concepts, which leads to a method for constructing knowledge and skill structures that can be applied to the adaptive assessment of skills. The processis as follows. First, expert teachers provide the question set Q, skill set S, and their corresponding skill multimaps (Q, S; μ). Next, the knowledge and skill structures are obtained from the extension and the intention of (X, B). Thereafter the knowledge structure is used to conduct the adaptive assessment of the sample, and the proportion of their knowledge states is calculated. Subsequently, the equal proportion selection rule of knowledge space theory "binary responses" is optimized to the sample proportion selection rule, facilitate faster assessment effects for examinees in different regions and age groups. Finally, the figure of learning paths for skill sets is drawn.

Key words: knowledge structure, skill structure, learning path, skill context, property-oriented concept

CLC Number: 

  • TP182

Fig.1

Flow chart of the practical application of FCA in KST"

Table 1

Skill context for the first row of B4×5"

(Q, S) a b c d e f
1 1 0 0 0 0 0
2 1 1 1 0 0 0
3 0 0 0 1 1 0
4 1 1 0 0 0 1
5 1 1 1 0 0 1

Table 2

Number of skill-related questions"

技能 问题集 问题个数
a {1, 2, 4, 5} 4
b {2, 4, 5} 3
c {2, 5} 2
d {3, 4, 5} 3
e {3, 5} 2
f {4, 5} 2

Fig.2

Hasse diagram of skills surmise relation"

Table 3

Concept lattice of four conjunctive skill context"

背景1概念 背景2概念 背景3概念 背景4概念
(?, ?) (?, ?) (?, ?) (?, ?)
(1, a) (1, a) (1, a) (1, a)
(3, de) (3, de) (3, de) (3, de)
(12, abc) (12, abc) (12, abc) (12, abc)
(13, ade) (13, ade) (13, ade) (13, ade)
(14, abf) (14, abf) (14, adf) (14, adf)
(123, abcde) (123, abcde) (123, abcde) (123, abcde)
(1245, abcf) (124, abcf) (125, abcf)
(1245, abcdf) (124, abcdf)
(135, adef) (134, adef) (1345, adef)
(134, abdef) (1345, abdef)
(Q, S) (Q, S) (Q, S) (Q, S)

Fig.3

Property-oriented concept lattice for context 1"

Fig.4

Equally scaled binary decision tree"

Table 4

Assessment process steps of the sample"

知识状态 步骤数 选择问题及考生样本反馈序列
? 3 (3, 0), (2, 0), (1, 0)
{1} 4 (3, 0), (2, 0), (1, 1), (4, 0)
{3} 3 (3, 1), (2, 0), (1, 0)
{1, 2} 3 (3, 0), (2, 1), (4, 0)
{1, 3} 4 (3, 1), (2, 0), (1, 1), (4, 0)
{1, 4} 4 (3, 0), (2, 0), (1, 1), (4, 1)
{1, 2, 3} 3 (3, 1), (2, 1), (4, 0)
{1, 2, 4, 5} 3 (3, 0), (2, 1), (4, 1)
{1, 3, 4, 5} 4 (3, 1), (2, 0), (1, 1), (4, 1)
{1, 2, 3, 4, 5} 3 (3, 1), (2, 1), (4, 1)

Table 5

Proportion of sample knowledge state distribution"

知识状态 卷数 比例
? 1 0.005
{1} 3 0.014
{3} 6 0.028
{1, 2} 0 0
{1, 3} 2 0.009
{1, 4} 5 0.023
{1, 2, 3} 5 0.023
{1, 2, 4, 5} 2 0.009
{1, 3, 4, 5} 81 0.375
{1, 2, 3, 4, 5} 111 0.514
共10 216 1

Fig.5

Student knowledge state proportional binary decision tree"

Table 6

Steps assessment process of the student"

知识状态 步骤数 选择问题及新考生反馈序列
? 5 (2, 0), (5, 0), (3, 0), (4, 0), (1, 0)
{1} 5 (2, 0), (5, 0), (3, 0), (4, 0), (1, 1)
{3} 4 (2, 0), (5, 0), (3, 1), (1, 0)
{1, 2} 4 (2, 1), (4, 0), (1, 1), (3, 0)
{1, 3} 4 (2, 0), (5, 0), (3, 1), (1, 1)
{1, 4} 4 (2, 0), (5, 0), (3, 0), (4, 1)
{1, 2, 3} 4 (2, 1), (4, 0), (1, 1), (3, 1)
{1, 2, 4, 5} 3 (2, 1), (4, 1), (3, 0)
{1, 3, 4, 5} 2 (2, 0), (5, 1)
{1, 2, 3, 4, 5} 3 (2, 1), (4, 1), (3, 1)

Fig.6

Learning paths for skill set S"

Table 7

Breakdown of Learning paths for skill set S"

路径 技能集S学习路径
1 $\varnothing \stackrel{a}{\longrightarrow}\{1\} \stackrel{b c}{\longrightarrow}\{1, 2\} \stackrel{f}{\longrightarrow}\{1, 2, 4, 5\} \stackrel{d e / e}{\longrightarrow} \boldsymbol{Q}$
2 $\varnothing \stackrel{a}{\longrightarrow}\{1\} \stackrel{b c}{\longrightarrow}\{1, 2\} \stackrel{d e}{\longrightarrow}\{1, 2, 3\} \stackrel{f}{\longrightarrow} \boldsymbol{Q}$
3 $\varnothing \stackrel{a}{\longrightarrow}\{1\} \stackrel{b f / d f}{\longrightarrow}\{1, 4\} \stackrel{b c / c}{\longrightarrow}\{1, 2, 4, 5\} \stackrel{d e / e}{\longrightarrow} \boldsymbol{Q}$
4 $\varnothing \stackrel{a}{\longrightarrow}\{1\} \stackrel{b f / d f}{\longrightarrow}\{1, 4\} \stackrel{d e / e}{\longrightarrow}\{1, 3, 4, 5\} \stackrel{b c / c}{\longrightarrow} \boldsymbol{Q}$
5 $\varnothing \stackrel{a}{\longrightarrow}\{1\} \stackrel{d e}{\longrightarrow}\{1, 3\} \stackrel{b c}{\longrightarrow}\{1, 2, 3\} \stackrel{f}{\longrightarrow} \boldsymbol{Q}$
6 $\varnothing \stackrel{a}{\longrightarrow}\{1\} \stackrel{d e}{\longrightarrow}\{1, 3\} \stackrel{f}{\longrightarrow}\{1, 3, 4, 5\} \stackrel{b c / c}{\longrightarrow} \boldsymbol{Q}$
7 $\varnothing \stackrel{d e}{\longrightarrow}\{3\} \stackrel{a}{\longrightarrow}\{1, 3\} \stackrel{b c}{\longrightarrow}\{1, 2, 3\} \stackrel{f}{\longrightarrow} \boldsymbol{Q}$
8 $\varnothing \stackrel{d e}{\longrightarrow}\{3\} \stackrel{a}{\longrightarrow}\{1, 3\} \stackrel{f}{\longrightarrow}\{1, 3, 4, 5\} \stackrel{b c / c}{\longrightarrow} \boldsymbol{Q}$

"

符号 名称 说明
Q 非空有限问题集 所有问题的集合
q 问题 一个问题qQ
K 知识状态 解答正确的问题集
Kq Kq知识状态集族 Kq的知识状态构成的集族
$\mathscr{K}$ 知识状态集族 Q的子集构成的集族且至少包含?和Q
U 对象集 形式背景三元组之一
A 属性集 形式背景三元组之二
I 二元关系I?U×A 形式背景三元组之三
x* x所具有的属性集合 x*={a|aA, (x, a)∈Ι}
a* 具有属性a的对象集合 a*={x|xU, (x, a)∈Ι}
X X中对象所具有的属性集合 X={aA|a*X≠?}
B 只具有B中属性的对象集合 B={xU|x*?B}
S 非空有限技能集 所有技能的集合
s 技能 一个技能sS
C 技能子集 正确解答K相关的最小技能子集
T 技能背景中的技能子集 技能子集T?S
$\mathscr{T}$ 技能状态集族 S的子集T构成的集族
τ 技能映射(技能单映射) Q到2S\{?}的映射
μ 技能多映射 Q到(22S\{?})\{?}的映射
1 DOIGNON J P , FALMAGNE J C . Spaces for the assessment of knowledge[J]. International Journal of Man-Machine Studies, 1985, 23 (2): 175- 196.
doi: 10.1016/S0020-7373(85)80031-6
2 DOIGNON J P , FALMAGNE J C . Knowledge spaces[M]. Berlin: Springer, 1999.
3 FALMAGNE J C , DOIGNON J P . Learning spaces: interdisciplinary applied mathematics[M]. Berlin: Springer, 2011: 22- 112.
4 FALMAGNE J C , ALBERT D , DOBLE C , et al. Knowledge spaces: applications in education[M]. Berlin: Springer, 2013: 51- 68.
5 HELLER J , STEINER C , HOCKEMEYER C , et al. Competence-based knowledge structures for personalised learning[J]. International Journal on E-learning, 2006, 5 (1): 75- 88.
6 STEINER C M , NUSSBAUMER A , ALBERT D . Supporting self-regulated persona-lised learning through competence-based knowledge space theory[J]. Policy Futures in Education, 2009, 7 (6): 645- 661.
doi: 10.2304/pfie.2009.7.6.645
7 DOBLE C , MATAYOSHI J , COSYN E , et al. A data-based simulation study of reliability for an adaptive assessment based on knowledge space theory[J]. International Journal of Artificial Intelligence in Education, 2019, 29 (2): 258- 282.
8 FALMAGNE J C , KOPPEN M , VILLANO M , et al. Introduction to knowledge spaces: how to build, test, and search them[J]. Psychological Review, 1990, 97 (2): 201- 224.
doi: 10.1037/0033-295X.97.2.201
9 COSYN E , UZUN H , DOBLE C , et al. A practical perspective on knowledge space theory: ALEKS and its data[J]. Journal of Mathematical Psychology, 2021, 101, 102512.
doi: 10.1016/j.jmp.2021.102512
10 DÜNTSCH I , GEDIGA G . Skills and knowledge structures[J]. British Journal of Mathematical and Statistical Psychology, 1995, 48 (1): 9- 27.
doi: 10.1111/j.2044-8317.1995.tb01047.x
11 DOIGNON J P. Knowledge spaces and skill assignments[M]//Contributions to Mathematical Psychology, Psychometrics, and Methodology. New York: Springer, 1994: 111-121.
12 STEFANUTTI L , DE CHIUSOLE D . On the assessment of learning in competence based knowledge space theory[J]. Journal of Mathematical Psychology, 2017, 80, 22- 32.
doi: 10.1016/j.jmp.2017.08.003
13 STEFANUTTI L . On the assessment of procedural knowledge: from problem spaces to knowledge spaces[J]. British Journal of Mathematical and Statistical Psychology, 2019, 72 (2): 185- 218.
doi: 10.1111/bmsp.12139
14 STEFANUTTI L , ANSELMI P , DE CHIUSOLE D , et al. On the polytomous generalization of knowledge space theory[J]. Journal of Mathematical Psychology, 2020, 94, 102306.
doi: 10.1016/j.jmp.2019.102306
15 HELLER J . Generalizing quasi-ordinal knowledge spaces to polytomous items[J]. Journal of Mathematical Psychology, 2021, 101, 102515.
doi: 10.1016/j.jmp.2021.102515
16 孙贝. 基于知识空间理论的学习诊断模型研究与实现[D]. 长沙: 湖南大学, 2009.
SUN Bei. Research and implementation of learning diagnosis model based on knowledge space theory[D]. Changsha: Hunan University, 2009.
17 刘艳花. 基于知识空间的自适应测试方法研究及实现[D]. 长沙: 湖南大学, 2010.
LIU Yanhua. Research and implementation of adaptive testing method based on knowledge space theory[D]. Changsha: Hunan University, 2010.
18 杨文正, 邹霞. 运用知识空间理论分析概念图[J]. 中国电化教育, 2011, (3): 83- 87.
doi: 10.3969/j.issn.1006-9860.2011.03.021
YANG Wenzheng , ZOU Xia . Use knowledge space theory to analyze concept map[J]. China Audio-visual Education, 2011, (3): 83- 87.
doi: 10.3969/j.issn.1006-9860.2011.03.021
19 张治, 刘小龙, 余明华, 等. 研究型课程自适应学习系统: 理念、策略与实践[J]. 中国电化教育, 2018, (4): 119- 130.
doi: 10.3969/j.issn.1006-9860.2018.04.017
ZHANG Zhi , LIU Xiaolong , YU Minghua , et al. Adaptive learning system for research-oriented course: idea, strategy, and practice[J]. China Educational Technology, 2018, (4): 119- 130.
doi: 10.3969/j.issn.1006-9860.2018.04.017
20 麦裕华, 何庆辉, 肖信. 基于知识空间理论的高中生科学原理学习分析: 以氧化还原反应为例[J]. 化学教育, 2018, 39 (19): 34- 40.
MAI Yuhua , HE Qinghui , XIAO Xin . Analysis of senior high school students̓ learning of scientific principles based on the knowledge space theory: a case of oxidation-reduction reaction[J]. Chinese Journal of Chemical Education, 2018, 39 (19): 34- 40.
21 何庆辉, 麦裕华. 基于知识空间理论的高一学生离子反应关键学习路径[J]. 化学教学, 2018, (7): 12- 17.
HE Qinghui , MAI Yuhua . Key study path of ionic reactions for Grade 1 high school students based on knowledge space theory[J]. Education in Chemistry, 2018, (7): 12- 17.
22 其勒格尔. 基于KST的学习诊断模型在《大学计算机基础》课程中的实践研究[D]. 呼和浩特: 内蒙古师范大学, 2019.
JILE G E. Practical research on KST-based learning diagnosis model in the course of university computer foundation[D]. Huhhot: Inner Mongolia Normal University, 2019.
23 GE Xun , LI Jinjin . A note on the separability of items in knowledge structures delineated by skill multimaps[J]. Journal of Mathematical Psychology, 2020, 98, 102427.
doi: 10.1016/j.jmp.2020.102427
24 何秋红, 孙文, 郑文彬, 等. 学习空间理论的ACM竞赛关键学习路径算法[J]. 山西大学学报(自然科学版), 2020, 43 (4): 828- 837.
HE Qiuhong , SUN Wen , ZHENG Wenbin , et al. An algorithm for critical learning path of ACM contest based on learning spaces theory[J]. Journal of Shanxi University(Natural Science Edition), 2020, 43 (4): 828- 837.
25 SUN Wen , LI Jinjin , GE Xun , et al. Knowledge structures delineated by fuzzy skill maps[J]. Fuzzy Sets and Systems, 2021, 407 (3): 50- 66.
26 ZHOU Yinfeng , LI Jinjin , WANG Hongkun , et al. Skills and fuzzy knowledge structures[J]. Journal of Intelligent & Fuzzy Systems, 2022, 42 (3): 2629- 2645.
27 孙晓燕, 李进金. 基于程序性知识学习的项目状态转移函数与多分知识结构[J]. 模式识别与人工智能, 2022, 35 (3): 223- 242.
SUN Xiaoyan , LI Jinjin . Item state transition functions and polytomous knowledge structures based on procedural knowledge learning[J]. Pattern Recognition and Artificial Intelligence, 2022, 35 (3): 223- 242.
28 孙晓燕, 李进金. 技能映射通过析取模型诱导的多分知识结构[J]. 华侨大学学报(自然科学版), 2023, 44 (1): 119- 132.
SUN Xiaoyan , LI Jinjin . Polytomous knowledge structures delineated by skill map through disjunctive model[J]. Journal of Huaqiao University(Natural Science Edition), 2023, 44 (1): 119- 132.
29 约翰-克劳德法尔马涅(美), 约翰-保罗杜瓦尼(比). 学习空间: 跨学科的应用数学[M]. 胡祥恩(校), 王泰(译). 北京: 世界图书出版公司, 2016.
Jean-Claude Falmagne(American), Jean-Paul Doignon(Belgian). Learning spaces: interdisciplinary applied mathematics[M]. HU Xiangen(proofreader), WANG Tai(interpreter). Beijing: World Book Publishing Company, 2016.
30 LAKSHMINARAYAN K. Theoretical and empirical aspects of some stochastic learning models[D]. Irvine: University of California, 1995.
31 COSYN E, DOBLE C, FALMAGNE J C, et al. Assessing mathematical knowledge in a learning space[M]//Knowledge Spaces. Berlin: Springer, 2013: 27-50.
32 LEE S , BELKASIM S , CHAHINE I C , et al. A web application for the knowledge space theory analysis: KST web[J]. International Journal of Engineering Research and Technology, 2014, 3 (9): 319- 322.
33 刘欣怡, 徐丽芳. 数字教育出版自适应智能教学与评估系统研究: 以麦格劳-希尔的ALEKS为例[J]. 出版参考, 2020, (6): 18- 23.
LIU Xinyi , XU Lifang . A study of adaptive intelligent teaching and assessment systems for digital educational publishing: McGraw-Hill̓s ALEKS as an example[J]. Information on Publication, 2020, (6): 18- 23.
34 周琴, 文欣月. 从自适应到智适应: 人工智能时代个性化学习新路径[J]. 现代教育管理, 2020, (9): 89- 96.
ZHOU Qin , WEN Xinyue . From adaptive learning to intelligent adaptive learning: a new approach to personalized learning in the era of artificial intelligence[J]. Modern Education Management, 2020, (9): 89- 96.
35 WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts[M]//Ordered Sets. Dordrecht: Springer, 1982: 445-470.
36 马垣, 曾子维, 迟呈英, 等. 形式概念分析及其新进展[M]. 北京: 科学出版社, 2011.
MA Yuan , ZENG Ziwei , CHI Chengying , et al. Formal concept analysis and its new progress[M]. Beijing: Science Press, 2011.
37 魏玲, 曹丽, 祁建军, 等. 形式概念分析中的概念约简与概念特征[J]. 中国科学(信息科学), 2020, 50 (12): 1817- 1833.
WEI Ling , CAO Li , QI Jianjun , et al. Concept reduction and concept characteristics in formal concept analysis[J]. Scientia Sinica(Informationis), 2020, 50 (12): 1817- 1833.
38 李金海, 魏玲, 张卓, 等. 概念格理论与方法及其研究展望[J]. 模式识别与人工智能, 2020, 33 (7): 619- 642.
LI Jinhai , WEI Ling , ZHANG Zhuo , et al. Concept lattice theory and method and their research prospect[J]. Pattern Recognition and Artificial Intelligence, 2020, 33 (7): 619- 642.
39 CARPINETO C , ROMANO G . A lattice conceptual clustering system and its application to browsing retrieval[J]. Machine Learning, 1996, 24 (2): 95- 122.
40 SAMPATH S , SPRENKLE S , GIBSON E , et al. Applying concept analysis to user-session-based testing of web applications[J]. IEEE Transactions on Software Engineering, 2007, 33 (10): 643- 658.
41 ZUPAN B , BOHANEC M , DEMSAR J , et al. Learning by discovering concept hierarchies[J]. Artificial Intelligence, 1999, 109 (1/2): 211- 242.
42 NGUYEN P H P , CORBETT D . A basic mathematical framework for conceptual graphs[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 18 (2): 261- 271.
43 RUSCH A, WILLE R. Knowledge spaces and formal concept analysis[M]// Data Analysis and Information Systems. Berlin: Springer, 1996: 427-436.
44 SPOTO A , STEFANUTTI L , VIDOTTO G . Knowledge space theory, formal concept analysis, and computerized psychological assessment[J]. Behavior Research Methods, 2010, 42 (1): 342- 350.
45 李进金, 孙文. 知识空间、形式背景和知识基[J]. 西北大学学报(自然科学版), 2019, 49 (4): 517- 526.
LI Jinjin , SUN Wen . Knowledge space, formal context and knowledge base[J]. Journal of Northwest University(Natural Science Edition), 2019, 49 (4): 517- 526.
46 周银凤, 韩光明. 基于析取模型的技能约简与推测关系的研究[J]. 闽南师范大学学报(自然科学版), 2020, 33 (3): 1- 7.
ZHOU Yinfeng , HAN Guangming . Research on skill reduction and surmise relation based on disjunction model[J]. Journal of Minnan Normal University(Natural Science Edition), 2020, 33 (3): 1- 7.
47 周银凤, 李进金, 冯丹露, 等. 形式背景下的学习路径与技能评估[J]. 模式识别与人工智能, 2021, 34 (12): 1069- 1084.
ZHOU Yinfeng , LI Jinjin , FENG Danlu , et al. Learning paths and skills assessment in formal context[J]. Pattern Recognition and Artificial Intelligence, 2021, 34 (12): 1069- 1084.
48 周银凤, 李进金. 形式背景下的技能约简与评估[J]. 计算机科学与探索, 2022, 16 (3): 692- 702.
ZHOU Yinfeng , LI Jinjin . Skill reduction and assessment in formal context[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16 (3): 692- 702.
49 GANTER B , WILLE R . Formal concept analysis: mathematical foundations[M]. Berlin: Springer, 1999.
50 李进金, 李克典, 吴端恭. 基于粗糙集与概念格的知识系统模型[M]. 北京: 科学出版社, 2013: 24- 150.
LI Jinjin , LI Kedian , WU Duangong . Knowledge system model based on rough set and concept lattice[M]. Beijing: Science Press, 2013: 24- 150.
51 BIRKHOFF G . Rings of sets[J]. Duke Mathematical Journal, 1937, 3 (3): 443- 454.
52 冯丹露, 周银凤. 基于面向问题概念格的技能约简与推测关系[J]. 闽南师范大学学报(自然科学版), 2021, 34 (2): 36- 44.
FENG Danlu , ZHOU Yinfeng . Skill reduction and surmise relation based on object problem concept lattice[J]. Journal of Minnan Normal University(Natural Science Edition), 2021, 34 (2): 36- 44.
53 孙波, 傅骞, 曲朝霞. 基于"扩展知识空间理论"的自适应测评过程研究[J]. 中国电化教育, 2004, (6): 75- 77.
SUN Bo , FU Qian , QU Zhaoxia . Research on adaptive evaluation process based on extended knowledge space theory[J]. China Electronic Education, 2004, (6): 75- 77.
54 孙波, 傅骞. 扩展知识空间理论研究[J]. 中国电化教育, 2004, (4): 74- 77.
SUN Bo , FU Qian . Research on extended knowledge space theory[J]. China Electronic Education, 2004, (4): 74- 77.
[1] Yujing LIN,Jinjin LI,Huiqin CHEN. Polytomous knowledge structure and learning path in formal context [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(9): 114-126.
[2] Xiyan CAO,Fucai LIN,Ming JIN,Jinjin LI. Assessment of procedural knowledge: from problem spaces to discriminative knowledge structures [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(7): 97-105, 114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .
[2] HE Hai-lun, CHEN Xiu-lan* . Circular dichroism detection of the effects of denaturants and buffers on the conformation of cold-adapted protease MCP-01 and  mesophilic protease BP01[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 23 -29 .
[3] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .
[4] SUN Xiao-ting1, JIN Lan2*. Application of DOSY in oligosaccharide mixture analysis[J]. J4, 2013, 48(1): 43 -45 .
[5] LUO Si-te, LU Li-qian, CUI Ruo-fei, ZHOU Wei-wei, LI Zeng-yong*. Monte-Carlo simulation of photons transmission at alcohol wavelength in  skin tissue and design of fiber optic probe[J]. J4, 2013, 48(1): 46 -50 .
[6] YANG Lun, XU Zheng-gang, WANG Hui*, CHEN Qi-mei, CHEN Wei, HU Yan-xia, SHI Yuan, ZHU Hong-lei, ZENG Yong-qing*. Silence of PID1 gene expression using RNA interference in C2C12 cell line[J]. J4, 2013, 48(1): 36 -42 .
[7] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .
[8] YANG Ying, JIANG Long*, SUO Xin-li. Choquet integral representation of premium functional and related properties on capacity space[J]. J4, 2013, 48(1): 78 -82 .
[9] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[10] DONG Wei-wei. A new method of DEA efficiency ranking for decision making units with independent subsystems[J]. J4, 2013, 48(1): 89 -92 .