JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (9): 114-126.doi: 10.6040/j.issn.1671-9352.0.2022.504
Yujing LIN(),Jinjin LI*(),Huiqin CHEN
CLC Number:
1 |
SCHREPP M . A generalization of knowledge space theory to problems with more than two answer alternatives[J]. Journal of Mathematical Psychology, 1997, 41 (3): 237- 243.
doi: 10.1006/jmps.1997.1169 |
2 |
BARTL E , BELOHLAVEK R . Knowledge spaces with graded knowledge states[J]. Information Sciences, 2011, 181 (8): 1426- 1439.
doi: 10.1016/j.ins.2010.11.040 |
3 |
STEFANUTTILl L , ANSELM P , DECHIUSOLE D , et al. On the polytomous generalization of knowledge space theory[J]. Journal of Mathematical Psychology, 2020, 94, 102306.
doi: 10.1016/j.jmp.2019.102306 |
4 |
HELLER J . Generalizing quasi-ordinal knowledge spaces to polytomous items[J]. Journal of Mathematical Psychology, 2021, 101, 102515.
doi: 10.1016/j.jmp.2021.102515 |
5 | 孙晓燕, 李进金. 技能映射通过析取模型诱导的多分知识结构[J/OL]. 华侨大学学报(自然科学版), 2022[2022-11-16]. http://kns.cnki.net/kcms/detail/35.1079.N.20220402.1013.002.html |
SUN Xiaoyan, LI Jinjin. Polytomous knowledge structures delineated by skill map through disjunctive model[J/OL]. Journal of Huaqiao University(Natural Science), 2022[2022-11-16]. http://kns.cnki.net/kcms/detail/35.1079.N.20220402.1013.002.html. | |
6 | 孙晓燕, 李进金. 基于程序性知识学习的项目状态转移函数与多分知识结构[J]. 模式识别与人工智能, 2022, 35 (3): 223- 242. |
SUN Xiaoyan , LI Jinjin . Item state transition functions and polytomous knowledge structures based on procedural knowledge learning[J]. Pattern Recognition and Artificial Intelligence, 2022, 35 (3): 223- 242. | |
7 | WILLE R . Restructuring lattice theory: an approach based on hierarchies of concepts[J]. Lecture Notes in Computer Science, 2009, 5548 (1): 314- 339. |
8 | RUSCH A, WILLE R. Knowledge spaces and formal concept analysis[C]//BOCK H H, POLASEK W. Data Analysis and Information Systems. Berlin: Springer, 1996: 427- 436. |
9 | 李进金, 孙文. 知识空间、形式背景和知识基[J]. 西北大学学报(自然科学版), 2019, 49 (4): 517- 526. |
LI Jinjin , SUN Wen . Knowledge space, formal context and knowledge base[J]. Journal of Northwest University(Natural Science Edition), 2019, 49 (4): 517- 526. | |
10 | DOIGNON J P , FALMAGNE J C . Learning spaces: interdisciplinary applied mathematics[M]. Berlin: Springer-Verlag, 2011. |
11 | 冯丹露, 周银凤. 基于面向问题概念格的技能约简与推测关系[J]. 闽南师范大学学报(自然科学版), 2021, 34 (2): 36- 44. |
FENG Danlu , ZHOU Yinfeng . Skill reduction and surmise relation based on object problem concept lattice[J]. Journal of Minnan Normal University(Natural Science), 2021, 34 (2): 36- 44. | |
12 | 周银凤, 李进金, 冯丹露, 等. 形式背景下的学习路径与技能评估[J]. 模式识别与人工智能, 2021, 34 (12): 1069- 1084. |
ZHOU Yinfeng , LI Jinjin , FENG Danlu , et al. Learning paths and skills assessment in formal context[J]. Pattern Recognition and Artificial Intelligence, 2021, 34 (12): 1069- 1084. | |
13 | BIRKHOFF G . Lattice theory[M]. New York: American Mathematical Society, 1967. |
14 |
STEFANUTTI L . On the assessment of procedural knowledge: from problem spaces to knowledge spaces[J]. British Journal of Mathematical and Statistical Psychology, 2019, 72 (2): 185- 218.
doi: 10.1111/bmsp.12139 |
15 | STEFANUTTI L , ALBERT D . Skill assessment in problem solving and simulated learning environments[J]. Journal of Universal Computer Science, 2003, 9 (12): 1455- 1468. |
16 | YAO Yiyu . A comparative study of formal concept analysis and rough sets theory in data analysis[J]. Lecture Notes in Computer Science, 2004, 3066 (1): 59- 68. |
17 | 李进金, 李克典, 吴端恭. 基于粗糙集与概念格的知识系统模型[M]. 北京: 科学出版社, 2013: 24- 150. |
LI Jinjin , LI Kedian , WU Duangong . Knowledge system model based on rough set and concept lattice[M]. Beijing: Science Press, 2013: 24- 150. | |
18 | SUN Wen, LI Jinjin, LIN Fucai, et al. Constructing polytomous knowledge structures from fuzzy skills[J/OL]. Fuzzy Sets and Systems, 2022[2022-11-16]. https://doi.org/10.1016/j.fss.2022.09.003. |
[1] | FAN Min, LUO Shan, LI Jin-hai. Cognition of network concepts based on variable precision possibility operator [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(8): 1-12. |
[2] | Jing ZHANG,Jian-min MA. F-C variable threshold concept lattices based on dependence spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(1): 68-74. |
[3] | XIE Xiao-xian, LI Jin-jin, CHEN Dong-xiao, LIN Rong-de. Concept reduction of preserving binary relations based on Boolean matrix [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(5): 32-45. |
[4] | LI Jin-hai, HE Jian-jun, WU Wei-zhi. Optimization of class-attribute block in multi-granularity formal concept analysis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(5): 1-12. |
[5] | LI Shuang-ling, YUE Xiao-wei, QIN Ke-yun. Granular structure in multi-source formal contexts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(5): 46-54. |
[6] | CHEN Dong-xiao, LI Jin-jin, LIN Rong-de, CHEN Ying-sheng. Rough approximation in multi-scale formal context [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(5): 22-31. |
[7] | JI Ru-ya, WEI Ling, REN Rui-si, ZHAO Si-yu. Pythagorean fuzzy three-way concept lattice [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(11): 58-65. |
[8] | LI Jin-hai, WU Wei-zhi, DENG Shuo. Multi-scale theory in formal concept analysis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(2): 30-40. |
[9] | QIAN Ting, ZHAO Si-yu, HE Xiao-li. Rules acquisition of decision formal contexts based on attribute granular [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 113-120. |
[10] | HUANG Tao-lin, NIU Jiao-jiao, LI Jin-hai. Reduct updating method in a dynamic formal context based on granular discernibility attribute matrix [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(7): 13-21. |
[11] | LING Mi-ran, MI Ju-sheng, MA Li. Heterogeneous formal contexts for uncertainty reasoning [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 28-32. |
[12] | WANG Bin-di, WEI Ling. The reduction theory of concept lattice based on its associated lattice [J]. J4, 2010, 45(9): 20-26. |