JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (12): 140-150.doi: 10.6040/j.issn.1671-9352.0.2022.434

•   • Previous Articles     Next Articles

Domination entropy based on graph operations

Ying JI1,2(),Bo DENG1,2,Haixing ZHAO1,2,3,*(),Yanlong TANG2,3   

  1. 1. College of Mathematics and Statistics, Qinghai Normal University, Xining 810008, Qinghai, China
    2. State Key Laboratory of Tibetan Intelligent Information Processing and Application, Xining 810008, Qinghai, China
    3. College of Computer, Qinghai Normal University, Xining 810008, Qinghai, China
  • Received:2022-08-19 Online:2023-12-20 Published:2023-12-19
  • Contact: Haixing ZHAO E-mail:jiying197@163.com;h.x.zhao@163.com

Abstract:

Graph invariants are widely used to construct entropy-based metrics to characterize the structure of complex networks. In particular, graph entropy based on dominating sets is often applied to characterize the amount of information in communication systems and the stability of computer networks. Graph entropy calculations are studied based on dominating sets under the four operations of graphs. That is the operations of the disjoint union, joining, corona product, and Cartesian product using the complete graph, star graph, comb graph, and friendship graph.

Key words: graph entropy, graph operation, domination polynomial, domination entropy

CLC Number: 

  • O157.5

Fig.1

Comb graph En"

Fig.2

Friendship graph F2, F3 and F4"

1 SHANNON C E , WEAVER W . The mathematical theory of communications[M]. Urbana: University of Illinois, 1949.
2 RASHEVSKY N . Life, information theory and topology[J]. The Bulletin of Mathematical Biophysics, 1955, 17 (3): 229- 235.
doi: 10.1007/BF02477860
3 TRUCCO E . A note on the information content of graphs[J]. The Bulletin of Mathematical Biophysics, 1956, 18 (2): 129- 135.
doi: 10.1007/BF02477836
4 MOWSHOWITZ A . Entropy and the complexity of the graphs: Ⅰ. An index of the relative complexity of a graph[J]. The Bulletin of Mathematical Biophysics, 1968, 30 (1): 175- 204.
doi: 10.1007/BF02476948
5 MOWSHOWITZ A . Entropy and the complexity of graphs: Ⅱ. The information content of digraphs and infinite graphs[J]. The Bulletin of Mathematical Biophysics, 1968, 30 (2): 225- 240.
doi: 10.1007/BF02476692
6 MOWSHOWITZ A . Entropy and the complexity of graphs: Ⅲ. Graphs with prescribed information content[J]. The Bulletin of Mathematical Biophysics, 1968, 30 (3): 387- 414.
doi: 10.1007/BF02476603
7 MOWSHOWITZ A . Entropy and the complexity of graphs: Ⅳ. Entropy measures and graphical structure[J]. The Bulletin of Mathematical Biophysics, 1968, 30 (4): 533- 546.
doi: 10.1007/BF02476673
8 DAUDEL R , BADER R F W , STEPHENS M E , et al. The electron pair in chemistry[J]. Canadian Journal of Chemistry, 1974, 52 (8): 1310- 1320.
doi: 10.1139/v74-201
9 BONCHEV D , KAMENSKI D , KAMENSKA V . Symmetry and information content of chemical structures[J]. Bulletin of Mathematical Biology, 1976, 38 (2): 119- 133.
doi: 10.1007/BF02471752
10 BONCHEV D . Information indices for atoms and molecules[J]. MATCH Communications in Mathematical and in Computer Chemistry, 1979, 7, 65- 112.
11 CAO S , DEHMER M , SHI Y . Extremality of degree-based graph entropies[J]. Information Sciences, 2014, 278, 22- 33.
doi: 10.1016/j.ins.2014.03.133
12 ALEKSANDAR I , MATTHIAS D . On the distance based graph entropies[J]. Applied Mathematics and Computation, 2015, 269, 647- 650.
doi: 10.1016/j.amc.2015.07.100
13 DEHMER M , LI X L , SHI Y T . Connections between generalized graph entropies and graph energy[J]. Complexity, 2015, 21 (1): 35- 41.
doi: 10.1002/cplx.21539
14 DEHMER M , MOWSHOWITZ A . A history of graph entropy measures[J]. Information Sciences: an International Journal, 2011, 181 (1): 57- 78.
doi: 10.1016/j.ins.2010.08.041
15 DEHMER M , EMMERT-STREIB F , CHEN Z Q , et al. Mathematical foundations and applications of graph entropy[M]. Weinheim: Wiley-Blackwell, 2016.
16 DAS K , SHI Y T . Some properties on entropies of graphs[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2017, 78 (2): 259- 272.
17 CAO S , DEHMER M , KANG Z . Network entropies based on independent sets and matchings[J]. Applied Mathematics and Computation, 2017, 307, 265- 270.
doi: 10.1016/j.amc.2017.02.021
18 ȘAHIN B . New network entropy: the domination entropy of graphs[J]. Information Processing Letters, 2022, 174, 106195.
doi: 10.1016/j.ipl.2021.106195
19 ALIKHANI S , PENG Y . Introduction to domination polynomial of a graph[J]. ARS Combinatoria, 2014, 114 (4): 257- 266.
20 ALIKHANI S , PENG Y H . Dominating sets and domination polynomials of paths[J]. International Journal of Mathematics and Mathematical Sciences, 2009, 2009 (1): 542040.
21 ALIKHANI S , PENG Y H . Dominating sets and domination polynomial of cycles[J]. Global Journal of Pure and Applied Mathematics, 2008, 4 (2): 151- 162.
22 ALIKHANI S , BROWN J I , JAHARI S . On the domination polynomials of friendship graphs[J]. Filomat, 2016, 30 (1): 169- 178.
doi: 10.2298/FIL1601169A
23 HAYNES T W , HEDETNIEMI S T , SLATER P J . Fundamentals of domination in graphs[M]. New York: Marcel Dekker, 1998.
24 IMRICH W , KLAVŽAR S . Product graphs: structure and recognition[M]. New York: John Wiley & Sons, 2000.
25 RANI A , IMRAN M , ALI U . Sharp bounds for the inverse sum indeg index of graph operations[J]. Mathematical Problems in Engineering, 2021, 2021, 5561033.
26 BEATON I. On dominating sets and the domination polynomials[D]. Halifax: Dalhousie University, 2021.
27 AKBARI S , ALIKHANI S , PENG Y H . Characterization of graphs using domination polynomials[J]. European Journal of Combinatorics, 2010, 31 (7): 1714- 1724.
doi: 10.1016/j.ejc.2010.03.007
28 ALIKHANI S . The domination polynomial of some graph operations[J]. ISRN Combinatorics, 2013, 2013, 146595.
29 KOTER T, PREEN J, TITTMANN P. Domination polynomials of graph products[EB/OL]. (2013-12-23). https://arxiv.ogr/abs/1305.1475v2.
30 GHORBANI M , DEHMER M , ZANGI S . Graph operations based on using distance-based graph entropies[J]. Applied Mathematics and Computation, 2018, 333, 547- 555.
doi: 10.1016/j.amc.2018.04.003
[1] WU Chuan-shu, ZHAO Hai-xing, DENG Bo. Degree-based graph entropy on graph operations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(6): 44-53.
[2] LU Peng-li, LIU Wen-zhi. On the generalized distance spectrum of graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(9): 19-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .
[2] HE Hai-lun, CHEN Xiu-lan* . Circular dichroism detection of the effects of denaturants and buffers on the conformation of cold-adapted protease MCP-01 and  mesophilic protease BP01[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 23 -29 .
[3] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .
[4] SUN Xiao-ting1, JIN Lan2*. Application of DOSY in oligosaccharide mixture analysis[J]. J4, 2013, 48(1): 43 -45 .
[5] LUO Si-te, LU Li-qian, CUI Ruo-fei, ZHOU Wei-wei, LI Zeng-yong*. Monte-Carlo simulation of photons transmission at alcohol wavelength in  skin tissue and design of fiber optic probe[J]. J4, 2013, 48(1): 46 -50 .
[6] YANG Lun, XU Zheng-gang, WANG Hui*, CHEN Qi-mei, CHEN Wei, HU Yan-xia, SHI Yuan, ZHU Hong-lei, ZENG Yong-qing*. Silence of PID1 gene expression using RNA interference in C2C12 cell line[J]. J4, 2013, 48(1): 36 -42 .
[7] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .
[8] YANG Ying, JIANG Long*, SUO Xin-li. Choquet integral representation of premium functional and related properties on capacity space[J]. J4, 2013, 48(1): 78 -82 .
[9] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[10] DONG Wei-wei. A new method of DEA efficiency ranking for decision making units with independent subsystems[J]. J4, 2013, 48(1): 89 -92 .