JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (12): 140-150.doi: 10.6040/j.issn.1671-9352.0.2022.434
• • Previous Articles Next Articles
Ying JI1,2(),Bo DENG1,2,Haixing ZHAO1,2,3,*(),Yanlong TANG2,3
CLC Number:
1 | SHANNON C E , WEAVER W . The mathematical theory of communications[M]. Urbana: University of Illinois, 1949. |
2 |
RASHEVSKY N . Life, information theory and topology[J]. The Bulletin of Mathematical Biophysics, 1955, 17 (3): 229- 235.
doi: 10.1007/BF02477860 |
3 |
TRUCCO E . A note on the information content of graphs[J]. The Bulletin of Mathematical Biophysics, 1956, 18 (2): 129- 135.
doi: 10.1007/BF02477836 |
4 |
MOWSHOWITZ A . Entropy and the complexity of the graphs: Ⅰ. An index of the relative complexity of a graph[J]. The Bulletin of Mathematical Biophysics, 1968, 30 (1): 175- 204.
doi: 10.1007/BF02476948 |
5 |
MOWSHOWITZ A . Entropy and the complexity of graphs: Ⅱ. The information content of digraphs and infinite graphs[J]. The Bulletin of Mathematical Biophysics, 1968, 30 (2): 225- 240.
doi: 10.1007/BF02476692 |
6 |
MOWSHOWITZ A . Entropy and the complexity of graphs: Ⅲ. Graphs with prescribed information content[J]. The Bulletin of Mathematical Biophysics, 1968, 30 (3): 387- 414.
doi: 10.1007/BF02476603 |
7 |
MOWSHOWITZ A . Entropy and the complexity of graphs: Ⅳ. Entropy measures and graphical structure[J]. The Bulletin of Mathematical Biophysics, 1968, 30 (4): 533- 546.
doi: 10.1007/BF02476673 |
8 |
DAUDEL R , BADER R F W , STEPHENS M E , et al. The electron pair in chemistry[J]. Canadian Journal of Chemistry, 1974, 52 (8): 1310- 1320.
doi: 10.1139/v74-201 |
9 |
BONCHEV D , KAMENSKI D , KAMENSKA V . Symmetry and information content of chemical structures[J]. Bulletin of Mathematical Biology, 1976, 38 (2): 119- 133.
doi: 10.1007/BF02471752 |
10 | BONCHEV D . Information indices for atoms and molecules[J]. MATCH Communications in Mathematical and in Computer Chemistry, 1979, 7, 65- 112. |
11 |
CAO S , DEHMER M , SHI Y . Extremality of degree-based graph entropies[J]. Information Sciences, 2014, 278, 22- 33.
doi: 10.1016/j.ins.2014.03.133 |
12 |
ALEKSANDAR I , MATTHIAS D . On the distance based graph entropies[J]. Applied Mathematics and Computation, 2015, 269, 647- 650.
doi: 10.1016/j.amc.2015.07.100 |
13 |
DEHMER M , LI X L , SHI Y T . Connections between generalized graph entropies and graph energy[J]. Complexity, 2015, 21 (1): 35- 41.
doi: 10.1002/cplx.21539 |
14 |
DEHMER M , MOWSHOWITZ A . A history of graph entropy measures[J]. Information Sciences: an International Journal, 2011, 181 (1): 57- 78.
doi: 10.1016/j.ins.2010.08.041 |
15 | DEHMER M , EMMERT-STREIB F , CHEN Z Q , et al. Mathematical foundations and applications of graph entropy[M]. Weinheim: Wiley-Blackwell, 2016. |
16 | DAS K , SHI Y T . Some properties on entropies of graphs[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2017, 78 (2): 259- 272. |
17 |
CAO S , DEHMER M , KANG Z . Network entropies based on independent sets and matchings[J]. Applied Mathematics and Computation, 2017, 307, 265- 270.
doi: 10.1016/j.amc.2017.02.021 |
18 |
ȘAHIN B . New network entropy: the domination entropy of graphs[J]. Information Processing Letters, 2022, 174, 106195.
doi: 10.1016/j.ipl.2021.106195 |
19 | ALIKHANI S , PENG Y . Introduction to domination polynomial of a graph[J]. ARS Combinatoria, 2014, 114 (4): 257- 266. |
20 | ALIKHANI S , PENG Y H . Dominating sets and domination polynomials of paths[J]. International Journal of Mathematics and Mathematical Sciences, 2009, 2009 (1): 542040. |
21 | ALIKHANI S , PENG Y H . Dominating sets and domination polynomial of cycles[J]. Global Journal of Pure and Applied Mathematics, 2008, 4 (2): 151- 162. |
22 |
ALIKHANI S , BROWN J I , JAHARI S . On the domination polynomials of friendship graphs[J]. Filomat, 2016, 30 (1): 169- 178.
doi: 10.2298/FIL1601169A |
23 | HAYNES T W , HEDETNIEMI S T , SLATER P J . Fundamentals of domination in graphs[M]. New York: Marcel Dekker, 1998. |
24 | IMRICH W , KLAVŽAR S . Product graphs: structure and recognition[M]. New York: John Wiley & Sons, 2000. |
25 | RANI A , IMRAN M , ALI U . Sharp bounds for the inverse sum indeg index of graph operations[J]. Mathematical Problems in Engineering, 2021, 2021, 5561033. |
26 | BEATON I. On dominating sets and the domination polynomials[D]. Halifax: Dalhousie University, 2021. |
27 |
AKBARI S , ALIKHANI S , PENG Y H . Characterization of graphs using domination polynomials[J]. European Journal of Combinatorics, 2010, 31 (7): 1714- 1724.
doi: 10.1016/j.ejc.2010.03.007 |
28 | ALIKHANI S . The domination polynomial of some graph operations[J]. ISRN Combinatorics, 2013, 2013, 146595. |
29 | KOTER T, PREEN J, TITTMANN P. Domination polynomials of graph products[EB/OL]. (2013-12-23). https://arxiv.ogr/abs/1305.1475v2. |
30 |
GHORBANI M , DEHMER M , ZANGI S . Graph operations based on using distance-based graph entropies[J]. Applied Mathematics and Computation, 2018, 333, 547- 555.
doi: 10.1016/j.amc.2018.04.003 |
[1] | WU Chuan-shu, ZHAO Hai-xing, DENG Bo. Degree-based graph entropy on graph operations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(6): 44-53. |
[2] | LU Peng-li, LIU Wen-zhi. On the generalized distance spectrum of graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(9): 19-28. |