JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (12): 151-160.doi: 10.6040/j.issn.1671-9352.0.2022.316

Previous Articles     Next Articles

Characterizing properties of (signless) Laplacian permanental polynomials of bicyclic graphs

Tingzeng WU*(),Tian ZHOU   

  1. School of Mathematics, Qinghai Minzu University, Xining 810007, Qinghai, China
  • Received:2022-05-17 Online:2023-12-20 Published:2023-12-19
  • Contact: Tingzeng WU E-mail:mathtzwu@163.com

Abstract:

Let G be a graph with n vertices, and let L(G) and Q(G) be the Laplacian matrix and signless Laplacian matrix of G, respectively. The polynomial π(L(G); x)=per(xI-L(G)) (resp. π(Q(G); x)=per(xI-Q(G))) is called Laplacian permanental polynomial (resp. signless Laplacian permanental polynomial) of G. In this paper, we show that two classes of bicyclic graphs are determined by their (signless) Laplacian permanental polynomials.

Key words: permanent, (signless) Laplacian matrix, (signless) Laplacian permanental polynomial, (signless) Laplacian copermanental

CLC Number: 

  • O157.6

Fig.1

Bycyclic graps d(p, q, r) and θ(p, q, r)"

1 VALIANT L G . The complexity of computing the permanent[J]. Theoretical Computer Science, 1979, 8 (2): 189- 201.
doi: 10.1016/0304-3975(79)90044-6
2 MERRIS R , REBMAN K R , WATKINS W . Permanental polynomials of graphs[J]. Linear Algebra and Its Applications, 1981, 38, 273- 288.
doi: 10.1016/0024-3795(81)90026-4
3 BAPAT R B . A bound for the permanent of the Laplacian matrix[J]. Linear Algebra and Its Applications, 1986, 74, 219- 223.
doi: 10.1016/0024-3795(86)90124-2
4 CASH G , GUTMAN I . The lapacian permanental polynomial: formulas and algorithms[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2004, 51 (51): 129- 136.
5 GENG X Y , HU X , LI S C . Further results on permanental bounds for the Laplacian matrix of trees[J]. Linear and Multilinear Algebra, 2010, 58 (5): 571- 587.
doi: 10.1080/03081080902765583
6 GENG X Y , HU S N , LI S C . Permanental bounds of the Laplacian matrix of trees with given domination number[J]. Graphs and Combinatorics, 2015, 31 (5): 1423- 1436.
doi: 10.1007/s00373-014-1451-z
7 LI S C , LI Y , ZHANG X X . Edge-grafting theorems on permanents of Laplacian matrices of graphs and their applications[J]. The Electronic Journal of Linear Algebra, 2013, 26, 28- 48.
8 LIU S Y . On the (signless) Laplacian permanental polynomials of graphs[J]. Graphs and Combinatorics, 2019, 35 (3): 787- 803.
doi: 10.1007/s00373-019-02033-2
9 LIU X G , WU T Z . Computing the permanental polynomials of graphs[J]. Applied Mathematics and Computation, 2017, 304 (C): 103- 113.
10 MERRIS R . The Laplacian permanental polynomial for trees[J]. Czechoslovak Mathematical Journal, 1982, 32 (3): 397- 403.
doi: 10.21136/CMJ.1982.101816
11 VRBA A . Principal subpermanents of the Laplacian matrix[J]. Linear and Multilinear Algebra, 1986, 19 (4): 335- 346.
doi: 10.1080/03081088608817728
12 GOLDWASSER J L . Permanent of the Laplacian matrix of trees with a given matching[J]. Discrete Mathematics, 1986, 61 (2/3): 197- 212.
13 BOTTI P , MERRIS R , VEGA C . Laplacian permanents of trees[J]. SIAM Journal on Discrete Mathematics, 1992, 5 (4): 460- 466.
doi: 10.1137/0405036
14 LIU X G , WU T Z . Graphs determined by the (signless) Laplacian permanental polynomial[J]. Linear and Multilinear Algebra, 2017, 3599- 3615.
15 FARIA I . Permanental roots and the star degree of a graph[J]. Linear Algebra and Its Applications, 1985, 64, 255- 265.
doi: 10.1016/0024-3795(85)90281-2
16 FARIA I . Multiplicity of integer roots of polynomials of graphs[J]. Linear Algebra and Its Applications, 1995, 229, 15- 35.
doi: 10.1016/0024-3795(93)00337-Y
17 LI S C , ZHANG L . Permanental bounds for the signless Laplacian matrix of bipartite graphs and unicyclic graphs[J]. Linear and Multilinear Algebra, 2011, 59 (2): 145- 158.
doi: 10.1080/03081080903261467
18 LI S C , ZHANG L . Permanental bounds for the signless Laplacian matrix of a unicyclic graph with diameter d[J]. Graphs and Combinatorics, 2012, 28 (4): 531- 546.
doi: 10.1007/s00373-011-1057-7
19 WU T Z , ZHOU T , LV H Z . Further results on the star degree of graphs[J]. Applied Mathematics and Computation, 2022, 425, 127076.
doi: 10.1016/j.amc.2022.127076
20 BRUALDI R A , GOLDWASSER J L . Permanent of the Laplacian matrix of trees and bipartite graphs[J]. Discrete Mathematics, 1984, 48 (1): 1- 21.
doi: 10.1016/0012-365X(84)90127-4
[1] QI Zhong-Bin, XIE Dong, ZHANG He-Beng. The relation between  cyclic edgeconnectivity and cyclic connectivity of 3regular connected graphs [J]. J4, 2009, 44(12): 22-24.
[2] QI Zhong-bin,ZHANG He-ping . 1-resonance of a class of Fullerene graphs [J]. J4, 2008, 43(4): 67-72 .
[3] SHI Ming, WEI Zong-tian, LIU Yong, WENG Ting-ting. Vertex weighted neighbor tenacity of graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(5): 26-32.
[4] YANG Rui, LIU Cheng-li, WU Nan-nan. The number of perfect matchings and k-resonance in n-prism [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(11): 37-41.
[5] WU Yi-fan, WANG Guang-fu. Extremal graphs on distance spectral radius of polyomino chains [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(2): 84-91.
[6] LAN Linyu, LI Jingwen, ZHANG Shucheng, ZHANG Lijing, SHEN Huayu. Vertex reducibletotal labeling algorithm for graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(11): 135-146.
[7] LU Peng-li, LUAN Rui, GUO Yu-hong. On path(signless)Laplacian spectral radius and energy of graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(7): 14-21.
[8] LU Peng-li, LIU Wen-zhi. On the generalized distance spectrum of graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(9): 19-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .
[2] HE Hai-lun, CHEN Xiu-lan* . Circular dichroism detection of the effects of denaturants and buffers on the conformation of cold-adapted protease MCP-01 and  mesophilic protease BP01[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 23 -29 .
[3] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .
[4] SUN Xiao-ting1, JIN Lan2*. Application of DOSY in oligosaccharide mixture analysis[J]. J4, 2013, 48(1): 43 -45 .
[5] LUO Si-te, LU Li-qian, CUI Ruo-fei, ZHOU Wei-wei, LI Zeng-yong*. Monte-Carlo simulation of photons transmission at alcohol wavelength in  skin tissue and design of fiber optic probe[J]. J4, 2013, 48(1): 46 -50 .
[6] YANG Lun, XU Zheng-gang, WANG Hui*, CHEN Qi-mei, CHEN Wei, HU Yan-xia, SHI Yuan, ZHU Hong-lei, ZENG Yong-qing*. Silence of PID1 gene expression using RNA interference in C2C12 cell line[J]. J4, 2013, 48(1): 36 -42 .
[7] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .
[8] YANG Ying, JIANG Long*, SUO Xin-li. Choquet integral representation of premium functional and related properties on capacity space[J]. J4, 2013, 48(1): 78 -82 .
[9] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[10] DONG Wei-wei. A new method of DEA efficiency ranking for decision making units with independent subsystems[J]. J4, 2013, 48(1): 89 -92 .