JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (1): 139-150.doi: 10.6040/j.issn.1671-9352.0.2023.116

Previous Articles    

Growth and physiological mechanism study of H. crustuliniforme and Lonicera japonica symbiotic relationship under salt tolerance

Deyu MU1(),Nan LI1,Tao WANG2,*(),Jin LIU1,Zongzhao MU3,Jingchuan ZHANG4   

  1. 1. Institute of Ornamental Plants, Shandong Jianzhu University, Jinan 251010, Shandong, China
    2. Weihai City Management Comprehensive Service Center, Weihai 264200, Shandong, China
    3. Shandong Forestry Foreign Investment and Engineering Project Management Station, Jinan 251014, Shandong, China
    4. Forestry Industry Development Center of Rushan Natural Resources Bureau, Weihai 264200, Shandong, China
  • Received:2023-03-23 Online:2024-01-20 Published:2024-01-19
  • Contact: Tao WANG E-mail:mudeyu@yeah.net;whaiwangtao@163.com

Abstract:

Lonicera japonica and Hebeloma crustuliniforme were used as materials in this study. 0, 60, 90 and 120 mmol/L NaCl salt treatments were taken out to study the rule of H. crustuliniforme colonization in plant roots and analyze the mechanism of H. crustuliniforme on the growth and physiological characteristics of L. japonica seedlings. The results showed that with the increase in salt concentration, the proline content in the inoculated group plants was 35.98%, 141.28%, 71.66% and 8.79% higher than that of the control group, respectively. Under the treatment of 90 and 120 mml/L salt concentration, the salt tolerance of L.japonica plants was improved by the H. crustuliniforme. The results of correlation and two-way ANOVA indicated thatnew shoot growth and the number of branch growth were positively correlated with the biomass, and proline showed a highly significant negative correlation with the number of branch growth. H. crustuliniforme could significantly reduce the host seedling height growth and increase the host proline content significantly. The inoculation with H. crustuliniforme treatment could increase the proline accumulation of L. japonica seedlings to resist salt adversity under salt stress.

Key words: Hebeloma crustuliniforme, Lonicera japonica, mycorrhizal fungi, physiological characteristics, salt resistance

CLC Number: 

  • S793.9

Table 1

Experimental design"

浓度/(mmol·L-1) 对照组/株 接菌组/株 合计/株
0 6 6 12
60 6 6 12
90 6 6 12
120 6 6 12
合计 24 24 48

Fig.1

Hebeloma crustuliniforme colonizes in the root system of Lonicera japonica"

Table 2

Intensity of colonizationby Hebeloma crustuliniforme on Lonicera japonica cuttings"

编号 处理浓度/(mmol/L) 侵染率平均值/%
1 0 66.7±7.2
2 60 70.0±4.7
3 90 66.7±2.7
4 120 63.3±7.2

Fig.2

Dry weight and fresh weight of Lonicera japonica Note: By Duncan's multiple comparisons, different upper or lower case letters on the means of each indicator indicate significant differences (P < 0.05)."

Fig.3

Hight growth of seedlings in each group after salt stress treatment"

Fig.4

Growth of Lonicera japonica new shoots after salt stress treatment"

Fig.5

Branch growth of Lonicera japonica after salt stress treatment"

Table 3

Two-way ANOVA analysis of the response of Hebeloma crustuliniformeto growth indexes of Lonicera japonica under salt stress"

处理 苗高增长量 新梢生长量 分枝增长数 总鲜质量 总干质量 地下鲜质量 地上鲜质量 地下干质量 地上干重
接菌 10.302* 381.306 3.025 0.091 0.482 0.441 0.132 0.027 0.279
盐胁迫 2.772 23.156 4.292 18.534* 12.004* 2.783 8.809* 0.084 10.322*
接菌+盐胁迫 2.336 456.740* 5.292 3.666 6.385 0.701 7.005* 0.008 6.687

Fig.6

Leaf chlorophyll concentrations of Lonicera japonica"

Fig.7

Leaf relative water content of Lonicera japonica"

Fig.8

Leaf proline content of Lonicera japonica"

Fig.9

Leaf soluble protein content of Lonicera japonica"

Table 4

Two-way ANOVA analysis of the response of Hebeloma crustuliniforme to physiological indexes of Lonicera japonica under NaCl salt stress"

处理 叶绿素a 叶绿素b 叶绿素 相对含水量 脯氨酸含量 可溶性蛋白含量
接菌 0.053 0.000 0.063 0.001 32.581** 2.493E-05
盐胁迫 0.245 0.048 0.468 10.273** 26.689** 0.000
接菌+盐胁迫 0.073 0.029 0.191 3.405* 5.180 0.001

Table 5

Correlation analysis of the effects of Hebeloma crustuliniforme on the growth indexes and physicochemical indexes of Hebeloma japonica under NaCl salt stress"

指标 苗高生长量 新梢生长量 分枝增长数 总鲜质量 总干质量 地下鲜质量 地上鲜质量 地下干质量 地上干质量 叶绿素a含量 叶绿素b含量 总叶绿素含量 相对含水量 脯氨酸含量 可溶性蛋白含量
苗高生长量 1
新梢生长量 0.153 1
分枝增长数 -0.048 -0.182 1
总鲜质量 0.104 0.277 0.305 1
总干质量 0.155 0.342* 0.325* 0.959** 1
地下鲜质量 -0.071 0.024 0.148 0.704** 0.489** 1
地上鲜质量 0.183 0.355* 0.316* 0.898** 0.977** 0.320* 1
地下干质量 -0.015 0.143 0.212 0.746** 0.635** 0.875** 0.453**
地上干质量 0.169 0.350** 0.323* 0.936** 0.995** 0.413** 0.993** 0.554** 1
叶绿素a含量 0.408* 0.168 0.101 -0.329 -0.280 -0.285 -0.290 -0.138 -0.286 1
叶绿素b含量 0.168 0.237 0.007 -0.187 -0.126 -0.276 -0.076 -0.218 -0.104 0.677** 1
总叶绿素含量 0.358 0.218 0.076 -0.306 -0.249 -0.304 -0.239 -0.176 -0.246 0.967** 0.841** 1
叶片相对含水量 0.096 -0.391 0.299 0.318 0.250 0.326 0.240 0.177 0.247 -0.336 -0.356 -0.369 1
脯氨酸含量 -0.157 0.297 -0.527** -0.381 -0.328 -0.352 -0.318 -0.227 -0.326 0.119 0.292 0.188 -0.409* 1
可溶性蛋白 -0.314 0.049 -0.245 0.048 0.060 0.072 0.019 0.154 0.042 -0.060 -0.214 -0.117 -0.228 -0.094 1
1 张建锋, 张旭东, 周金星, 等. 世界盐碱地资源及其改良利用的基本措施[J]. 水土保持研究, 2005, 21 (6): 32- 34.
ZHANG Jianfeng , ZHANG Xudong , ZHOU Jinxing , et al. World resources of saline soil and main amelioration measures[J]. Research of Soil and Water Conservation, 2005, 21 (6): 32- 34.
2 李建国, 濮励杰, 朱明, 等. 土壤盐渍化研究现状及未来研究热点[J]. 地理学报, 2012, 67 (9): 1233- 1245.
LI Jianguo , PU Lijie , ZHU Ming , et al. The present situation and hot issues in the salt-affected soil research[J]. Acta Geographica Sinica, 2012, 67 (9): 1233- 1245.
3 李彬, 王志春, 孙志高, 等. 中国盐碱地资源与可持续利用研究[J]. 干旱地区农业研究, 2005, 23 (2): 154- 158.
LI Bin , WANG Zhichun , SUN Zhigao , et al. Resources and sustainable resource exploitation of salinized land in China[J]. Agricultural Research in the Arid Areas, 2005, 23 (2): 154- 158.
4 杨劲松. 中国盐渍土研究的发展历程与展望[J]. 土壤学报, 2008, 61 (5): 837- 845.
YANG Jinsong . Development and prospect of the research on salt-affected soils in China[J]. Acta Pedologica Sinica, 2008, 61 (5): 837- 845.
5 王宝山, 赵可夫, 邹琦. 作物耐盐机理研究进展及提高作物抗盐性的对策[J]. 植物学通报, 1997, 15 (S1): 26- 31.
WANG Baoshan , ZHAO Kefu , ZOU Qi . Advances in mechanism of crop salt tolerance and strategies for raising crop salt tolerance[J]. Chinese Bulletin of Botany, 1997, 15 (S1): 26- 31.
6 王佺珍, 刘倩, 高娅妮, 等. 植物对盐碱胁迫的响应机制研究进展[J]. 生态学报, 2017, 37 (16): 5565- 5577.
WANG Quanzhen , LIU Qian , GAO Yani , et al. Review on the mechanism of the response to salinity-alkalinity stress in plants[J]. Acta Ecologica Sinica, 2017, 37 (16): 5565- 5577.
7 王东明, 贾媛, 崔继哲. 盐胁迫对植物的影响及植物盐适应性研究进展[J]. 中国农学通报, 2009, 25 (4): 124- 128.
WANG Dongming , JIA Yuan , CUI Jizhe . Advances in research on effects of salt stress on plant and adaptive mechanism of the plant to salinity[J]. Chinese Agricultural Science Bulletin, 2009, 25 (4): 124- 128.
8 彭莎, 霍晓乾, 霍梦琪, 等. 基于系统中药学的金银花清热解毒功效标志物研究[J]. 中国中药杂志, 2020, 45 (14): 3275- 3281.
PENG Sha , HUO Xiaoqian , HUO Mengqi , et al. Study on efficacy marker of heat-clearing and detoxifying effect of Lonicera Japonica based on systematic traditional Chinese medicine[J]. China Journal of Chinese Materia Medica, 2020, 45 (14): 3275- 3281.
9 肖美凤, 刘文龙, 周晋, 等. 金银花和山银花的研究现状及质量控制的关键问题[J]. 中草药, 2018, 49 (20): 4905- 4911.
XIAO Meifeng , LIU Wenlong , ZHOU Jin , et al. Research status of Lonicera japonica and Lonicera hypoglauca and its key issues for quality control[J]. Chinese Traditional and Herbal Drugs, 2018, 49 (20): 4905- 4911.
10 常尚连, 申苗, 张立宾, 等. 黄河三角洲地区金银花的耐盐性[J]. 北方园艺, 2016, (20): 162- 164.
CHANG Shanglian , SHEN Miao , ZHANG Libin , et al. Salt tolerance of Lonicerae japonicae in the Yellow River Delta[J]. Northern Horticulture, 2016, (20): 162- 164.
11 张翔鹤. 金银花根围AM真菌时空分布及其与碳氮关系研究[D]. 保定: 河北大学, 2012.
ZHANG Xianghe. Research of AM fungal distribution and the relationship with soil carbon and nitrogen in the rhizosphere of Lonicera japonica[D]. Baoding: Hebei University, 2012.
12 刘锦春, 马晔, 陶建平, 等. 丛枝菌根真菌对西南岩溶地区干旱及干湿交替下金银花根系生长的影响[J]. 北京林业大学学报, 2015, 37 (10): 110- 116.
LIU Jinchun , MA Hua , TAO Jianping , et al. Effects of AM fungus on root growth of Lonicera japonica under alternate dry and wet conditions in karst regions of southwestern China[J]. Journal of Beijing Forestry University, 2015, 37 (10): 110- 116.
13 JIANG Qiuyun , ZHUO Feng , LONG Shihui , et al. Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils?[J]. Scientific Reports, 2016, 6 (1): 1- 9.
doi: 10.1038/s41598-016-0001-8
14 EBERHARDT U , BEKER H , VESTERHOLT J . Decrypting the Hebeloma crustuliniforme complex: european species of Hebeloma section Denudata subsect Denudata (Agaricales)[J]. Persoonia, 2015, 35 (1): 101- 147.
doi: 10.3767/003158515X687704
15 SIEMENS J A , ZWIAZEK J J . Root hydraulic properties and growth of balsam poplar (Populus balsamifera) mycorrhizal with Hebeloma crustuliniforme and Wilcoxina mikolae var. mikolae[J]. Mycorrhiza, 2008, 18 (8): 393- 401.
doi: 10.1007/s00572-008-0193-2
16 ONWUCHEKWA N E , ZWIAZEK J J , QUORESHI A , et al. Growth of mycorrhizal jack pine (Pinus banksiana) and white spruce (Picea glauca) seedlings planted in oil sands reclaimed areas[J]. Mycorrhiza, 2014, 24 (6): 431- 441.
doi: 10.1007/s00572-014-0555-x
17 NGUYEN H , CALVO P M , ZWIAZEK J J . Gas exchange and growth responses of ectomycorrhizal Picea mariana, Picea glauca, and Pinus banksiana seedlings to NaCl and Na2SO4[J]. Plant Biology (Stuttgart, Germany), 2006, 8 (5): 646- 652.
doi: 10.1055/s-2006-924106
18 BOIS G , BIGRAS F J , BERTRAND A , et al. Ectomycorrhizal fungi affect the physiological responses of Picea glauca and Pinus banksiana seedlings exposed to a NaCl gradient[J]. Tree Physiology, 2006, 26 (9): 1185- 1196.
doi: 10.1093/treephys/26.9.1185
19 MU Deyu , CHEN Ding . Developing a salinity tolerance indicator for tree varieties at challenging sites and urban forests based on inferences of physiological responses: an example of Ulmus pumila[J]. Trees, 2021, 36 (2): 593- 607.
20 补春兰, 晏梅静, 董廷发, 等. 接种丛枝菌根真菌对不别同性别合栽模式下桑树生物量、光合及侵染率的影响[J]. 植物生理学报, 2022, 58 (11): 2181- 2190.
BU Chunlan , YAN Meijing , DONG Yanfa , et al. Effect of arbuscular mycorrhizal fungi (AMF) on biomass, photosynthetic characteristics and infection rate of mulberry(Morus alba) in different combination groups[J]. Plant Physiology Journal, 2022, 58 (11): 2181- 2190.
21 祁琳, 曹帮华, 刘炜, 等. 盐胁迫对刺槐幼苗生长、15N和13C分配利用特性的影响[J]. 山东大学学报(理学版), 2022, 57 (3): 10- 19.
QI Lin , CAO Banghua , LIU Yi , et al. Effect of salt stress on seedings growth, utilization and distribution characteristics of 15N and 13C in Robinia pseudoacacia[J]. Journal of Shandong University(Natural Science), 2022, 57 (3): 10- 19.
22 邱念伟, 王修顺, 杨发斌, 等. 叶绿素的快速提取与精密测定[J]. 植物学报, 2016, 51 (5): 667- 678.
QIU Nianwei , WANG Xiushun , YANG Fabin , et al. Fast extraction and precise determination of chlorophyll[J]. Chinese Bulletin of Botany, 2016, 51 (5): 667- 678.
23 张治安, 陈展宇. 植物生理学实验技术[M]. 长春: 吉林大学出版社, 2008: 22- 195.
ZHANG Zhian , CHEN Zhanyu . Experimental techniques in plant physiology[M]. Changchun: Jilin University Press, 2008: 22- 195.
24 THOMSON B D , GROVE T S , MALAJCZUK N , et al. The effectiveness of ectomycorrhizal fungi in increasing the growth of Eucalyptus globulus Labill. relation to root colonization and hyphal development in soil[J]. New Phytologist, 1994, 126 (3): 517- 524.
doi: 10.1111/j.1469-8137.1994.tb04250.x
25 ELTROP L , MARSCHNER H . Growth and mineral nutrition of non-mycorrhizal and mycorrhizal Norway spruce (Piceaabies) seedlings grown in semi-hydroponic sand culture[J]. New Phytologist, 1996, 133 (3): 479- 486.
doi: 10.1111/j.1469-8137.1996.tb01915.x
26 TINKER P B , DURALL D M , JONES M D . Carbon use efficiency in mycorrhizas: theory and sample calculations[J]. Phytol, 1994, 128 (1): 115- 122.
doi: 10.1111/j.1469-8137.1994.tb03994.x
27 CORREA A , STRASSER R J , MARTINS-LOUCAO M A . Are mycorrhiza always beneficial?[J]. Plant and Soil, 2006, 279 (12): 65- 73.
28 马祥, 贾志峰, 刘勇. 盐胁迫下燕麦光合及叶绿素代谢变化研究[J]. 青海畜牧兽医杂志, 2021, 51 (3): 7- 14.
MA Xiang , JIA Zhifeng , LIU Yong . Study on photosynthesis and chlorophyll metabolism of Avena sativa L. under salt stress[J]. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2021, 51 (3): 7- 14.
29 WEN Zhugui , XING Jinchen , LIU Chong , et al. The effects of ectomycorrhizal inoculation on survival and growth of Pinus thunbergii seedlings planted in saline soil[J]. Symbiosis, 2022, 86 (1): 71- 80.
30 SHI Liang , WANG Jie , LIU Binhao , et al. Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments[J]. Mycorrhiza, 2017, 27 (8): 823- 830.
doi: 10.1007/s00572-017-0795-7
31 LERNER H R . Adaptation to salinity at the plant cell level[J]. Plant Soil, 1985, 89 (13): 3- 14.
32 许卉, 赵丽萍. 盐胁迫对金银花生理生化的影响[J]. 湖北林业科技, 1007, 36 (1): 9- 12.
XU Hui , ZHAO Liping . Effects of salt stress on physiology and biochemistry of Lonicera japonica[J]. Hubei Forestry Science and Technology, 1007, 36 (1): 9- 12.
33 温祝桂, 朱小梅, 刘冲, 等. 两株外生菌根真菌对盐渍土壤中黑松幼苗生长的影响[J]. 中南林业科技大学学报, 2019, 39 (4): 22- 27.
WEN Zhugui , ZHU Xiaomei , LIU Chong , et al. Effects of two ectomycorrhizal fungi on growth of Pinus thunbergii seedlings planted in saline soil[J]. Journal of Central South University of Forestry & Technology, 2019, 39 (4): 22- 27.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Zhi1,2, SUN Cui-fang2, WANG Ning1, DU Xian-neng1. On the fibre product of Zn and its property[J]. J4, 2013, 48(2): 15 -19 .
[2] ZHANG Ai-ping,LI Gang . LRquasinormalEhresmann semigroups[J]. J4, 2006, 41(5): 44 -47 .
[3] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[4] DONG Li-hong1,2, GUO Shuang-jian1. The fundamental theorem for weak Hopf module in  Yetter-Drinfeld module categories[J]. J4, 2013, 48(2): 20 -22 .
[5] CHENG Li-qing1,2, SHI Qiao-lian2. A new hybrid conjugate gradient method[J]. J4, 2010, 45(6): 81 -85 .
[6] BIAN Pei,HE Hai-lun,CHEN Xiu-lan,ZHANG Yu-zhong . [J]. J4, 2006, 41(5): 166 -172 .
[7] WANG Zhen and ZHANG Jin . A conservative numerical scheme and its convergence analysis for a class of the NLS equation[J]. J4, 2007, 42(3): 13 -17 .
[8] ZHAO Tong-xin1, LIU Lin-de1*, ZHANG Li1, PAN Cheng-chen2, JIA Xing-jun1. Pollinators and pollen polymorphism of  Wisteria sinensis (Sims) Sweet[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 1 -5 .
[9] MA Jian-ling . Spectral characterization of the rhomb-type achromatic retarder[J]. J4, 2007, 42(7): 27 -29 .
[10] WANG Kang, LI Hua. Analysis of the compound Haqing injection with hyphenated chromatography and chemometric resolution[J]. J4, 2009, 44(11): 16 -20 .