JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (1): 132-138.doi: 10.6040/j.issn.1671-9352.0.2023.216

Previous Articles     Next Articles

Differences in height, diameter at breast height, and growth relationships between them of common tree species at different altitudes in Shandong Province

Wenxin ZHANG1(),Qiang LI2,Ning WANG3,Xiaoli FAN1,Hui WANG3,Chengping JIANG4,Yu LIANG1,*()   

  1. 1. Shandong Academy of Forestry, Jinan 250014, Shandong, China
    2. School of Tropical Medicine of Hainan Medical University, Haikou 571199, Hainan, China
    3. School of Life Sciences of Shandong University, Qingdao 266237, Shandong, China
    4. Yantai Forest Resources Monitoring and Protection Service Center, Yantai 264001, Shandong, China
  • Received:2023-05-12 Online:2024-01-20 Published:2024-01-19
  • Contact: Yu LIANG E-mail:zhangwenxin_508@163.com;liangyu_79@163.com

Abstract:

Based on the data of plant community inventory in Shandong Province, the common tree species were selected as the research objects to analyze the characteristics of diameter at breast height(DBH) and tree height. Single factor analysis of variance was used to compare whether DBH and tree height were significantly different at different altitudes. The allometric growth relationship between tree height and DBH of different tree species at different altitudes was studied by standardized major axis estimation. The study found that there were significant differences in DBH, tree height and their growth relationship at different altitudes, and height-DBH allometry of different tree species at different altitudes was different. The height-DBH growth relationship of three broad-leaved tree species, Quercus acutissima, Robinia pseudoacacia and Quercus variabilis, shows allometry growth at different altitudes, and the growth rate of DBH is greater than that of tree height. At low altitude, the growth rate of DBH of Platycladus orientalis was higher than that of tree height, while at middle altitude, the growth rate of tree height was higher than that of DBH. For Pinus tabulaeformis, the growth rate of tree hight is faster at low altitude areas, while the growth rate of DBH is faster in middle and high altitude areas. Pinus densiflora and Larix kaempferi have adopted isokinetic growth patterns in high and medium altitude areas. The environmental changes caused by altitude gradients can affect the growth process of trees, but the differences in growth response of different tree species are the result of the combined effects of habitat and genetic characteristics.

Key words: tree height, diameter at breast height, allometry, altitude

CLC Number: 

  • Q948

Table 1

Survey information table of common tree species in Shandong Province"

树种 调查个体数 海拔/m 平均树高/m 平均胸径/cm
侧柏 2 888 31~841 7.77±0.05 12.37±0.10
赤松 4 120 62~1 058 5.97±0.05 11.91±0.10
油松 3 231 80~1 344 6.32±0.07 13.26±0.12
日本落叶松 1 010 125~1 339 12.80±0.20 19.34±0.29
麻栎 2 632 7~1 208 7.38±0.07 12.28±0.14
刺槐 6 483 0~1 162 7.92±0.04 11.75±0.08
栓皮栎 1 228 40~922 7.58±0.10 12.68±0.24

Fig.1

Diameter at breast height and height of main tree species at different altitudes in Shandong Province"

Table 2

Allometric relationship between diameter at breast height and tree height of common tree species at different altitudes in Shandong Province"

树种 海拔/m 斜率 截距 斜率下限 斜率上限 截距下限 截距上限 R2 P 异速生长模式
< 500 0.73 0.08 0.70 0.76 0.05 0.11 0.37 < 0.001 -
侧柏 500~1 000 1.23 -0.39 1.16 1.30 -0.47 -0.32 0.15 < 0.001 +
>1 000
< 500 0.89 -0.21 0.87 0.92 -0.24 -0.18 0.42 < 0.001 -
赤松 500~1 000 0.92 -0.18 0.87 0.96 -0.23 -0.13 0.48 < 0.001 -
>1 000 1.02 -0.32 0.89 1.17 -0.48 -0.16 0.36 0.76 =
< 500 1.20 -0.53 1.15 1.24 -0.58 -0.48 0.51 < 0.001 +
油松 500~1 000 0.92 -0.24 0.89 0.96 -0.28 -0.20 0.32 < 0.001 -
>1 000 0.83 -0.10 0.76 0.91 -0.19 -0.01 0.38 < 0.001 -
< 500 0.60 0.30 0.43 0.84 0.05 0.54 0.28 < 0.001 -
日本落叶松 500~1 000 0.98 -0.14 0.94 1.01 -0.19 -0.10 0.73 0.21 =
>1 000 0.86 -0.04 0.78 0.95 -0.15 0.06 0.32 < 0.001 -
< 500 0.89 -0.10 0.86 0.92 -0.13 -0.06 0.52 < 0.001 -
麻栎 500~1 000 0.81 0.02 0.77 0.84 -0.02 0.06 0.59 < 0.001 -
>1 000 0.69 0.05 0.57 0.83 -0.08 0.17 0.60 < 0.001 -
< 500 0.77 0.08 0.76 0.79 0.07 0.10 0.57 < 0.001 -
刺槐 500~1 000 0.79 0.07 0.78 0.81 0.05 0.09 0.65 < 0.001 -
>1 000 0.86 -0.07 0.78 0.95 -0.16 0.02 0.74 < 0.001 -
< 500 0.64 0.19 0.62 0.67 0.17 0.22 0.57 < 0.001 -
栓皮栎 500~1 000 0.83 -0.05 0.77 0.90 -0.13 0.03 0.34 < 0.001 -
>1 000
1 AIBA S I , KOHYAMA T . Tree species stratification in relation to allometry and demography in warm-temperate rain forest[J]. Journal of Ecology, 1996, 84 (2): 207- 218.
doi: 10.2307/2261356
2 韩文轩, 方精云. 幂指数异速生长机制模型综述[J]. 植物生态学报, 2008, 32 (4): 951- 960.
doi: 10.3773/j.issn.1005-264x.2008.04.025
HAN Wenxuan , FANG Jingyun . Review on the mechanism models of allometric scaling laws: 3/4 vs. 2/3 power[J]. Chinese Journal of Plant Ecology, 2008, 32 (4): 951- 960.
doi: 10.3773/j.issn.1005-264x.2008.04.025
3 MOONEY K A , HALITSCHKE R , KESSLER A . Evolutionary trade-offs in plants mediate the strength of trophic cascades[J]. Science, 2010, 326, 1642- 1644.
4 QIU H , LIU S , ZHANG Y , et al. Variation in height-diameter allometry of ponderosa pine along competition, climate, and species diversity gradients in the western United States[J]. Forest Ecology and Management, 2021, 497 (1): 119477.
5 ZHANG X , CHHIN S , FU L , et al. Climate-sensitive tree height-diameter allometry for Chinese fir in southern China[J]. Forestry, 2019, 92, 167- 176.
doi: 10.1093/forestry/cpy043
6 李利平, 安尼瓦尔·买买提, 王襄平. 新疆山地针叶林乔木胸径-树高关系分析[J]. 干旱区研究, 2011, (1): 47- 53.
LI Liping , ANIVAR Maimaiti , WANG Xiangping . Analysis on the relationship between DBH and tree height of coniferous forests in mountainous areas of Xinjiang[J]. Arid Zone Research, 2011, (1): 47- 53.
7 王仁卿, 周光裕. 山东植被[M]. 济南: 山东科学技术出版社, 2000.
WANG Renqing , ZHOU Guangyu . Vegetation in Shandong Province[M]. Jinan: Shandong Science and Technology Press, 2000.
8 方精云, 王襄平, 沈泽昊, 等. 植物群落清查的主要内容方法和技术规范[J]. 生物多样性, 2009, 17 (6): 533- 548.
FANG Jingyun , WANG Xiangping , SHEN Zehao , et al. Methods and protoclols for plant community inventory[J]. Biodiversity Science, 2009, 17 (6): 533- 548.
9 HARVEY P J , PAGEL M D . The comparative method in evolutionary biology[M]. Oxford: Oxford University Press, 1991.
10 WARTON D I , WRIGHT I J , FALSTER D S , et al. Bivariate linefitting methods for allometry[J]. Biological Review, 2006, 81 (2): 259- 291.
doi: 10.1017/S1464793106007007
11 WARTON D I , DUURSMA R A , FALSTER D S , et al. SMATR 3-an R package for estimation and inference about allometric lines[J]. Methods in Ecology and Evolution, 2012, 3, 257- 259.
doi: 10.1111/j.2041-210X.2011.00153.x
12 TASKINEN S , WARTON D I . Robust estimation and inference for bivariate line-fitting in allometry[J]. Biometrical Journal, 2011, 53 (4): 652- 672.
doi: 10.1002/bimj.201000018
13 陈甲瑞, 王小兰. 藏东南高山松异速生长关系的海拔差异性[J]. 湖南农业科学, 2021, (2): 29- 32.
CHEN Jiarui , WANG Xiaolan . Altitude differences of allometric growth relationship of Pinus Densata in Southeast Tibet[J]. Hunan Agricultural Sciences, 2021, (2): 29- 32.
14 李钰, 赵成章, 董小刚, 等. 高寒草地狼毒枝-叶性状的坡度差异性[J]. 植物生态学报, 2013, 37 (8): 709- 717.
LI Yu , ZHAO Chengzhang , DONG Xiaogang , et al. Twig and leaf trait differences in Stellera chamaejasme with slope in alpine grassland[J]. Chinese Journal of Plant Ecology, 2013, 37 (8): 709- 717.
15 KRAMER K , LEINONEN I , LOUSTAU D . The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview[J]. International Journal of Biometeorology, 2000, 44 (2): 67- 75.
doi: 10.1007/s004840000066
16 喻树龙, 袁玉江, 秦莉, 等. 天山北坡中部不同海拔高度雪岭云杉树轮宽度气候响应对比分析[J]. 沙漠与绿洲气象, 2016, 10 (3): 30- 38.
YU Shulong , YUAN yujiang , QIN Li , et al. Tree-ring-width growth responses of Picea schrenkiana to climate change for different elevations in the central Tianshan Mountains[J]. Desert and Oasis Meteorology, 2016, 10 (3): 30- 38.
17 谭一波, 申文辉, 田红灯, 等. 猫儿山不同海拔植物群落树木构型差异及其影响因子[J]. 应用生态学报, 2019, 30 (8): 2614- 2620.
TAN Yibo , SHEN Wenhui , TIAN Hongdeng , et al. Tree architecture variation of plant communities along altitude and impact factors in Maoer Mountain, Guangxi, China[J]. Chinese Journal of Applied Ecology, 2019, 30 (8): 2614- 2620.
18 朱苗苗, 朱强根, 李波, 等. 植物构件间异速生长关系研究进展[J]. 安徽农学通报, 2022, 28 (2): 36- 39.
ZHU Miaomiao , ZHU Qianggen , LI Bo , et al. Research progress of allometry growth relationship between plant components[J]. Anhui Agricultural Science Bulletin, 2022, 28 (2): 36- 39.
19 张文馨. 山东植物群落及其物种多样性分布格局与形成机制[D]. 济南: 山东大学, 2016.
ZHANG Wenxin. The spatial patterns of plant species diversity and their underlying mechanisms in Shandong Province, China[D]. Jinan: Shandong University, 2016.
20 LINES E R , ZAVALA M A , PURVES D W , et al. Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition[J]. Global Ecology & Biogeography, 2012, 21 (10): 1017- 1028.
21 LEAL S , MELVIN T M , GRABNER M , et al. Tree-ring growth variability in the Austrian Alps: the influence of site, altitude, tree species and climate[J]. Boreas, 2007, 36 (4): 426- 440.
doi: 10.1080/03009480701267063
[1] Wen-xin ZHANG,Xiao-li FAN,Qiang WANG,Yong FANG,Yu LIANG. Relationship between plant diversity and ecosystem multifunctionality in the Yellow River Delta [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(1): 110-116.
[2] Xiu-hua ZHANG,Hai-ying QI,Ren-qing WANG,Jian LIU. Plant diversity in nature reserves of Shandong Province [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(7): 1-10.
[3] DU Ning,GUO Wei-hua,WU Da-qian,WANG Qi and WANG Ren-qing . Inter-specific relations of shrub and herbage species under a typical forest on Kunyu Mountain [J]. J4, 2007, 42(3): 71-77 .
[4] LI Yan-cheng,CHENG Chun-min ,YANG Ji-hua*,WANG Xing-cui and LIU Pei-juan . Study on the water-holding ability of the litter in different mixed forest of Tumen Plantation of Xintai [J]. J4, 2007, 42(1): 69-75 .
[5] XU Fei,GUO Wei-hua,WANG Yu-fang,WANG Wei,DU Ning and WANG Ren-qing* . Photosynthetic fluorescence characteristics of six greening tree species on university campuses in the city of Jinan [J]. J4, 2007, 42(5): 86-94 .
[6] WU Da-qian,DU Ning,WANG Wei,ZHAI Wen,WANG Yu-feng,WANG Ren-qing and ZHANG Zhi-guo* . Quantitative analysis of structure and biodiversity of shrub layer and herbage layer under forest community at Kunyu Mountain [J]. J4, 2007, 42(1): 83-88 .
[7] ZHANG Xian-qiang,GUO W-ei-hua,YANG Ji-hong,LIU Cheng-cheng and WANG Ren-qing . A study of population structure and dynamics of Robinia pseudoacacia clones [J]. J4, 2006, 41(2): 135-139 .
[8] ZHANG Xiu-hua, QI Hai-ying, LIU Jian, WANG Ren-qing, ZHAO Jing. Distribution and its influencing factors of rare and endangered plants in Shandong Province [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(5): 42-50.
[9] SONG Bai-min, LIU Jian, ZHANG Yu-hu, WANG Ren-qing. Characteristics of soil and vegetation during natural restoration process in abandoned quarry [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(1): 8-19.
[10] WANG Ren-qing, ZHANG Yu-han, SUN Shu-xia, ZHENG Pei-ming. Review and prospect of vegetation research in the Yellow River Delta [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(10): 135-148.
[11] ZHANG Wen-xin, WANG Hui, FAN Xiao-li, WANG Qiang, FANG Yong, LIANG Yu. Analysis on plant community dynamics and succession in the Confucian Cemetery, Shandong Province, China [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(11): 43-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TANG Xiao-hong1, HU Wen-xiao2*, WEI Yan-feng2, JIANG Xi-long2, ZHANG Jing-ying2, SHAO Xue-dong3. Screening and biological characteristics studies of wide wine-making yeasts[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 12 -17 .
[2] YUAN Rui-qiang,LIU Guan-qun,ZHANG Xian-liang,GAO Hui-wang . Features of hydrogen and oxygen isotopes in groundwater ofthe shallow part of Yellow River Delta[J]. J4, 2006, 41(5): 138 -143 .
[3] LIU Hong-hua . The alternating group iterative method for the dispersive equation[J]. J4, 2007, 42(1): 19 -23 .
[4] LIU Kun-lun. Application of variable structure pair copula model in the analysis of financial contagion[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 104 -110 .
[5] HE Hai-lun, CHEN Xiu-lan* . Circular dichroism detection of the effects of denaturants and buffers on the conformation of cold-adapted protease MCP-01 and  mesophilic protease BP01[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 23 -29 .
[6] WANG Bi-yu, CAO Xiao-hong*. The perturbation for the Browder’s theorem of operator matrix#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 90 -95 .
[7] HU Xuan-zi1, XIE Cun-xi2. A robot local path plan based on artificial immune network[J]. J4, 2010, 45(7): 122 -126 .
[8] GUO Qiao-jin, DING Yi, LI Ning. A context based method for ROI detection in digitized mammograms[J]. J4, 2010, 45(7): 70 -75 .
[9] FU Hai-yan,LU Chang-jing,SHI Kai-quan . (F,F-)-law inference and law mining[J]. J4, 2007, 42(7): 54 -57 .
[10] LI Xiao-nan,LI Bi-jing,LI Shang-gang . [J]. J4, 2006, 41(5): 95 -99 .