JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (6): 56-63.doi: 10.6040/j.issn.1671-9352.0.2023.042
• • Previous Articles Next Articles
CLC Number:
| 1 | GUTMAN I . Geometric approach to degree-based topological indices: sombor indices[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2021, 86 (1): 11- 16. | 
| 2 | DENG H Y ,  TANG Z K ,  WU R F .  Molecular trees with extremal values of sombor indices[J]. International Journal of Quantum Chemistry, 2021, 121 (11): e26622. doi: 10.1002/qua.26622 | 
| 3 | DAS K C ,  ÇEVIK A S ,  CANGUL I N , et al.  On sombor index[J]. Symmetry, 2021, 13 (1): 140. doi: 10.3390/sym13010140 | 
| 4 | DAS K C , GHALAVAND A , ASHRAFI A R . On a conjecture about the sombor index of graphs[J]. Symmetry, 2021, 13 (10): 1- 10. | 
| 5 | WANG Z ,  MAO Y P ,  LI Y , et al.  On relations between Sombor and other degree-based indices[J]. Journal of Applied Mathematics and Computing, 2022, 68 (1): 1- 17. doi: 10.1007/s12190-021-01516-x | 
| 6 | ROBERTO C ,  GUTMAN I ,  JUAN R .  Sombor index of chemical graphs[J]. Applied Mathematics and Computation, 2021, 399, 126018. doi: 10.1016/j.amc.2021.126018 | 
| 7 | KHALIFEH M H ,  YOUSEFI-AZARI H ,  ASHRAFI A R .  The first and second Zagreb indices of some graph operations[J]. Discrete Applied Mathematics, 2009, 157 (4): 804- 811. doi: 10.1016/j.dam.2008.06.015 | 
| 8 | SARALA D ,  DENG H ,  AYYASWAMY S K , et al.  The zagreb indices of graphs based on four new operations related to the lexicographic product[J]. Applied Mathematics and Computation, 2017, 309, 156- 169. doi: 10.1016/j.amc.2017.04.002 | 
| 9 | SARALA D ,  DENG H ,  NATARAJAN C , et al.  F index of graphs based on four new operations related to the strong product[J]. AKCE International Journal of Graphs and Combinatorics, 2020, 17 (1): 25- 37. doi: 10.1016/j.akcej.2018.07.003 | 
| 10 | CVETKOVIĆ D M , DOOB M , SACHS H . Spectra of graphs: theory and application[M]. New York: Academic Press, 1980. | 
| 11 | ELIASI M ,  TAERI B .  Four new sums of graphs and their wiener indices[J]. Discrete Applied Mathematics, 2009, 157 (4): 794- 803. doi: 10.1016/j.dam.2008.07.001 | 
| 12 | AIGNER M .  On the linegraph of a directed graph[J]. Mathematische Zeitschrift, 1967, 102 (1): 56- 61. doi: 10.1007/BF01110285 | 
| 13 | YEH Y N , GUTMAN I . On the sum of all distances in composite graphs[J]. Discrete Mathematics, 1994, 135 (1/2/3): 359- 365. | 
| 14 | AKHTER S ,  IMRAN M .  Computing the forgotten topological index of four operations on graphs[J]. AKCE International Journal of Graphs and Combinatorics, 2017, 14 (1): 70- 79. doi: 10.1016/j.akcej.2016.11.012 | 
| 15 | GUTMAN I , DAS K C . The first zagreb index 30 years after[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2004, 50 (50): 83- 92. | 
| [1] | Yaxin SHI,Fengxia LIU,Hua CAI. On r-hued coloring of Wn□Pm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(2): 59-64. | 
| [2] | Ruiying XUE,Zongtian WEI,Meijuan ZHAI. Restricted burning connectivity of graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(2): 91-99, 109. | 
| [3] | Le CHANG,Zongtian WEI. Graph N[S]-T reconstruction based on neighbor connectivity optimization [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(6): 40-45, 76. | 
| [4] | SUO Meng-ge, CHEN Jing-rong, ZHANG Juan-min. k-Path vertex cover in Cartesian product graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(12): 103-110. | 
| [5] | YANG Rui, LIU Cheng-li, WU Nan-nan. The number of perfect matchings and k-resonance in n-prism [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(11): 37-41. | 
| [6] | LU Peng-li, LIU Wen-zhi. On the generalized distance spectrum of graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(9): 19-28. | 
| [7] | LA Bai, DENG Bo, YE Cheng-fu, FU Feng, LI Yi-jing. Balaban indices of three kinds of regular graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(4): 97-101. | 
| [8] | LIU Xin-sheng, DENG Wei-dong, WANG Zhi-qiang. Several conclusions of adjacent vertex distinguishing E-total coloring of the cartesian product graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(02): 5-8. | 
| [9] | ZHOU Wei-na, ZUO Lian-cui*. A(d,1)-total labeling of Cartesian products of some classes of graphs#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 24-28. | 
| [10] | HU Yu-mei, ZHOU Xing-yi, MA Xing-yu*. The Zagreb eccentricity indices of Cartesian product of graph [J]. J4, 2013, 48(8): 15-17. | 
| [11] | WANG Dong-yan, LI Shenggang*, YANG Wen-hua. The product operations and related decompostions of fuzzy graphs [J]. J4, 2013, 48(6): 104-110. | 
| [12] | WU Fang-lan1, ZUO Lian-cui2*. Equitable colorings of a special class of Cartesian products of graphs [J]. J4, 2013, 48(4): 20-24. |