JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (8): 84-93.doi: 10.6040/j.issn.1671-9352.0.2023.123

•   • Previous Articles     Next Articles

A class of two-state quantum walk based on Hadamard walk with the same eigenvalues and continuous spectrum

Pingtao LYU(),Caishi WANG*(),Jijun ZHAO   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2023-03-21 Online:2024-08-20 Published:2024-07-31
  • Contact: Caishi WANG E-mail:2328158374@qq.com;wangcs@nwnu.edu.cn

Abstract:

In this paper, we generalize the Wojcik model to make the whole model contain two parameters ε and ω. Especially, although the extended model adds one parameter ε, the eigenvalue does not change, i.e., it does not depend on the newly added parameter. At the same time, we compare the eigenvalue distribution of the extended model on the unit circle with the region of Hadamard walk continuous spectrum, and obtain relevant conclusions.

Key words: discrete-time quantum walk, eigenvalue, stationary measure, continuous spectrum

CLC Number: 

  • O211.6

Table 1

Parameter dependence of the eigenvalues and the corresponding stationary measures for the extend model $ \beta=\alpha \mathrm{e}^{e i} \mathrm{i}$"

$ \phi$ $ \beta=\alpha \mathrm{e}^{\varepsilon i} \mathrm{i}$
$ \frac{1}{8}\left(\omega=\mathrm{e}^{\frac{\pi \mathrm{i}}{4}}=\frac{\sqrt{2}+\sqrt{2} \mathrm{i}}{2}\right)$ $ \lambda^2=-1, \quad \mu(x)=2|\alpha|^2\left(\frac{1}{3-2 \sqrt{2}}\right)^{|x|} \begin{cases}2-\sqrt{2}, & x \neq 0, \\ 1, & x=0\end{cases}$
$ \frac{1}{6}\left(\omega=\mathrm{e}^{\frac{\pi i}{3}}=\frac{1+\sqrt{3} i}{2}\right)$ $ \lambda^2=\frac{-1+\sqrt{3} i}{2}, \quad \mu(x)=2|\alpha|^2\left(\frac{1}{2-\sqrt{3}}\right)^{|x|} \begin{cases}\frac{3-\sqrt{3}}{2}, & x \neq 0, \\ 1, & x=0\end{cases}$
$ \frac{1}{4}\left(\omega=\mathrm{e}^{\frac{\pi \mathrm{i}}{2}}=\mathrm{i}\right)$ $ \lambda^2=\mathrm{i}, \quad \mu(x)=2|\alpha|^2$
$ \frac{1}{2}\left(\omega=\mathrm{e}^{\pi \mathrm{i}}=-1\right)$ $ \lambda^2=\frac{-4+3 \mathrm{i}}{5}, \quad \mu(x)=2|\alpha|^2\left(\frac{1}{5}\right)^{|x|} \begin{cases}3, & x \neq 0 ,\\ 1, & x=0\end{cases}$
$ \frac{2}{3}\left(\omega=\mathrm{e}^{\frac{4 \pi \mathrm{i}}{3}}=\frac{-1-\sqrt{3} \mathrm{i}}{2}\right)$ $ \lambda^2=\frac{-6-3 \sqrt{3}+(1-2 \sqrt{3}) \mathrm{i}}{8+2 \sqrt{3}}, \quad \mu(x)=2|\alpha|^2\left(\frac{1}{4+\sqrt{3}}\right){ }^{|x|} \begin{cases}\frac{5+\sqrt{3}}{2}, & x \neq 0, \\ 1, & x=0\end{cases}$
$ \frac{3}{4}\left(\omega=\mathrm{e}^{\frac{3 \pi \mathrm{i}}{2}}=-\mathrm{i}\right)$ $ \lambda^2=\frac{-4-3 \mathrm{i}}{5}, \quad \mu(x)=2|\alpha|^2\left(\frac{1}{5}\right)^{|x|} \begin{cases}3, & x \neq 0, \\ 1, & x=0\end{cases}$

Table 2

Parameter dependence of the eigenvalues and the corresponding stationary measures for the extend model $ \beta=-\alpha \mathrm{e}^{\varepsilon i} \mathrm{i}$"

$ \phi$ $ \beta=-\alpha \mathrm{e}^{\varepsilon i} \mathrm{i}$
$ \frac{1}{8}\left(\omega=\mathrm{e}^{\frac{\mathrm{i}}{4}}=\frac{\sqrt{2}+\sqrt{2} \mathrm{i}}{2}\right)$ $ \lambda^2=\frac{-1+2 \sqrt{2} \mathrm{i}}{3}, \quad \mu(x)=2|\alpha|^2\left(\frac{1}{3}\right)^{|x|} \begin{cases}2, & x \neq 0, \\ 1, & x=0\end{cases}$
$ \frac{1}{6}\left(\omega=\mathrm{e}^{\frac{i}{3}}=\frac{1+\sqrt{3} i}{2}\right)$ $ \lambda^2=\frac{-(2+\sqrt{3})+(3+2 \sqrt{3}) \mathrm{i}}{4+2 \sqrt{3}}, \quad \mu(x)=2|\alpha|^2\left(\frac{1}{2+\sqrt{3}}\right)^{|x|} \begin{cases}\frac{3+\sqrt{3}}{2}, & x \neq 0, \\ 1, & x=0\end{cases}$
$ \frac{1}{4}\left(\omega=\mathrm{e}^{\frac{\mathrm{i}}{2}}=\mathrm{i}\right)$ $ \lambda^2=\frac{-4+3 \mathrm{i}}{5}, \quad \mu(x)=2|\alpha|^2\left(\frac{1}{5}\right)^{|x|} \begin{cases}3, & x \neq 0, \\ 1, & x=0\end{cases}$
$ \frac{1}{2}\left(\omega=\mathrm{e}^{\pi \mathrm{i}}=-1\right)$ $ \lambda^2=\frac{-4-3 \mathrm{i}}{5}, \quad \mu(x)=2|\alpha|^2\left(\frac{1}{5}\right)^{|x|} \begin{cases}3, & x \neq 0, \\ 1, & x=0\end{cases}$
$ \frac{2}{3}\left(\omega=e^{\frac{4 \pi i}{3}}=\frac{-1-\sqrt{3} \mathrm{i}}{2}\right)$ $ \lambda^2=\frac{3 \sqrt{3}-6-(1+2 \sqrt{3}) \mathrm{i}}{8-2 \sqrt{3}}, \quad \mu(x)=2|\alpha|^2\left(\frac{1}{4-\sqrt{3}}\right)^{|x|} \begin{cases}\frac{5-\sqrt{3}}{2}, & x \neq 0, \\ 1, & x=0\end{cases}$
$ \frac{3}{4}\left(\omega=e^{\frac{3 \pi i}{2}}=-i\right)$ $ \lambda^2=-\mathrm{i}, \quad \mu(x)=2|\alpha|^2\left(\frac{1}{5}\right)^{|x|} \begin{cases}3, & x \neq 0, \\ 1, & x=0\end{cases}$

Fig.1

Illustrations of the eigenvalues movements of the extend model, when $ \beta=\alpha \mathrm{e}^{\varepsilon i} \mathrm{i}$"

Fig.2

$ \beta=-\alpha \mathrm{e}^{\varepsilon i} \mathrm{i}$"

1 AHARONOVY,DAVIDOVICHL,ZAGURYN.Quantum random walks[J].Physical Review A,1993,48(2):1687-1690.
doi: 10.1103/PhysRevA.48.1687
2 KEMPEJ.Quantum random walks: an introductory overview[J].Contemporary Physics,2003,44(4):307-327.
doi: 10.1080/00107151031000110776
3 BOSES.Quantum communication through an unmodulated spin chain[J].Physical Review Letters,2003,91(20):207901.
doi: 10.1103/PhysRevLett.91.207901
4 ENDOT,KONNON.The stationary measure of a space-inhomogeneous quantum walk on the line[J].Yokohama Math J,2014,60,33-47.
5 ENDOS,ENDOT,KOMATSUT,et al.Eigenvalues of two-state quantum walks induced by the Hadamard walk[J].Entropy,2020,22(1):127-139.
doi: 10.3390/e22010127
6 ENDOT,KONNON,SEGAWAE,et al.A one-dimensional Hadamard walk with one defect[J].Yokohama Math J,2014,60,49-90.
7 WANGCaishi,LUXiangying,WANGWenling.The stationary measure of a space-inhomogeneous three-state quantum walk on the line[J].Quantum Inf Process,2015,14(3):867-880.
doi: 10.1007/s11128-015-0922-3
8 韩琦,郭婷,殷世德,等.直线上空间非齐次三态量子游荡的平稳测度[J].数学物理学报,2019,39A(1):133-142.
HANQi,GUOTing,YINShide,et al.The stationary measure of a space-inhomogeneous three-state quantum walk on the line[J].Acta Math Sci,2019,39A(1):133-142.
9 KOMATSUT,KONNON.Stationary measure induced by the eigenvalue problem of the one-dimensional Hadamard walk[J].Journal of Statistical Physics,2022,187(10):1-24.
10 ENDOS,ENDOT,KONNON,et al.Limit theorems of a two-phase quantum walk with one-defect[J].Quantum Inf Comput,2015,15(15):1373-1396.
11 GRIMMETTG,JANSONS,SCUDOP.Weak limits for quantum walks[J].Physical Review E,2004,69(2):1-6.
12 INUIN,KONISHIY,KONNON.Localization of two-dimensional quantum walks[J].Physical Review A,2004,69(5):052323.
[1] Chaofan LIANG,Fenjin LIU,Yuchao LI,Shunyi LIU. Construction of singularly cospectral graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(2): 65-70.
[2] REN Shi-xian, AN Jing. An efficient spectral approximation for the transmission eigenvalue problem in spherical domains [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(4): 8-15.
[3] DAI Li-fang, LIANG Mao-lin, RAN Yan-ping. Solvability conditions for a class of tensor inverse eigenvalue problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(6): 95-102.
[4] ZHANG Ya-li. Global structure of the positive solution for a class of fourth-order boundary value problems with first derivative [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(8): 102-110.
[5] JIA Shu-xiang, DENG Bo, YE Cheng-fu, FU Feng, CHEN Hui-long. Description of the upper(lower)bounds of Resolvent Estrada index [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(4): 92-96.
[6] ZHAO Jiao. Global structure of the set of positive solutions for a class of nonlinear third-order boundary value problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 104-110.
[7] JI Jie. Eigenvalues asymptotic formula and trace formula for a class of impulsive Sturm-Liouville operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 49-56.
[8] WANG Su-yun, LI Yong-jun. Solvability of nonlinear second-order boundary value problems with nonlinearities which cross the resonance points [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 53-56.
[9] JIAN Yuan, LIU Ding-you. Extremal eigenvalues of a class of tridiagonal interval matrices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 15-22.
[10] HAO Ping-ping, WEI Guang-sheng. Eigenvalue asymptotics of a class of the Dirac operator [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(02): 55-59.
[11] WANG Feng. Estimation on lower bounds for the minimum eigenvalue of the Hadamard  product of inverse matrix of nonsingular M-matrix and M-matrix [J]. J4, 2013, 48(8): 30-33.
[12] JIN Guang-qing, ZUO Lian-cui*. An Upper Bound on the Sum of the k Largest Eigenvalues of  the Signless Laplacian Matrix of a Graph [J]. J4, 2013, 48(8): 1-4.
[13] SUN De-rong, XU Lan. Trees with exactly three main eigenvalues [J]. J4, 2013, 48(6): 23-28.
[14] ZHAO Na. The finite spectrum of SturmLiouville problems on time scales [J]. J4, 2013, 48(09): 96-102.
[15] 杨晓英,刘新. New lower bounds on the minimum eigenvalue of the Hadamard product of an M-matrix and its inverse [J]. J4, 2012, 47(8): 64-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .
[2] ZHANG Ya-dong1, LI Xin-xiang2, SHI Dong-yang3. Superconvergence analysis of a nonconforming finite element for #br# strongly damped wave equations[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 28 -35 .
[3] CHEN Ya-juan1,2, SHANG Xin-chun1*. Dynamical formation and growth of cavity in a heated viscoelastic sphere[J]. J4, 2013, 48(4): 72 -76 .
[4] WANG Qi,ZHAO Xiu-heng,LI Guo-jun . Embedding hypergraph in trees of rings[J]. J4, 2007, 42(10): 114 -117 .
[5] LIU Jian-ya and ZHAN Tao . The quadratic Waring-Goldbach problem[J]. J4, 2007, 42(2): 1 -18 .
[6] TIAN Xue-gang, WANG Shao-ying. Solutions to the operator equation AXB=C[J]. J4, 2010, 45(6): 74 -80 .
[7] PANG Guan-song, ZHANG Li-sha, JIANG Sheng-yi*, KUANG Li-min, WU Mei-ling. A multi-level clustering approach based on noun phrases for search results[J]. J4, 2010, 45(7): 39 -44 .
[8] SHU Zhi-Jiang, HU An-Yin, HU Lin, LIAN Jian. Research on the method of viral mobile communication cross entropy based on video service[J]. J4, 2009, 44(9): 32 -34 .
[9] YU Xiu-qing. (σ,τ)-expansion model of P-sets and its properties#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 90 -94 .
[10] TIAN You-gong, LIU Zhuan-ling. Extremal distributions for 5-convex stochastic orderings with arbitrary discrete support and applications in actuarial sciences[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(07): 57 -62 .