JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (10): 22-29.doi: 10.6040/j.issn.1671-9352.0.2023.236
• • Previous Articles Next Articles
Zhenai LI(),Hui WEI*(
),Xin CHEN
CLC Number:
1 |
FUJITA H , CIMR D . Computer aided detection for fibrillations and flutters using deep convolutional neural network[J]. Information Sciences, 2019, 486, 231- 239.
doi: 10.1016/j.ins.2019.02.065 |
2 |
ZHAO J , XU Y T , FUJITA H . An improved non-parallel Universum support vector machine and its safe sample screening rule[J]. Knowledge-Based Systems, 2019, 170, 79- 88.
doi: 10.1016/j.knosys.2019.01.031 |
3 |
WU S , WANG H J . A modified Newton-like method for nonlinear equations[J]. Computational and Applied Mathematics, 2020, 39 (3): 238.
doi: 10.1007/s40314-020-01283-8 |
4 |
WANG X F , JIN Y F H , ZHAO Y L . Derivative-free iterative methods with some Kurchatov-type accelerating parameters for solving nonlinear systems[J]. Symmetry, 2021, 13 (6): 943.
doi: 10.3390/sym13060943 |
5 |
YUAN G L , LI T T , HU W J . A conjugate gradient algorithm for large-scale nonlinear equations and image restoration problems[J]. Applied Numerical Mathematics, 2020, 147, 129- 141.
doi: 10.1016/j.apnum.2019.08.022 |
6 |
WANG K , GONG W Y , LIAO Z W , et al. Hybrid niching-based differential evolution with two archives for nonlinear equation system[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52 (12): 7469- 7481.
doi: 10.1109/TSMC.2022.3157816 |
7 | ALGELANY A M , EL-SHORBAGY M A . Chaotic enhanced genetic algorithm for solving the nonlinear system of equations[J]. Computational Intelligence and Neuroscience, 2022, 2022, 1376479. |
8 |
PAN L Q , ZHAO Y , LI L H . Neighborhood-based particle swarm optimization with discrete crossover for nonlinear equation systems[J]. Swarm and Evolutionary Computation, 2022, 69, 101019.
doi: 10.1016/j.swevo.2021.101019 |
9 |
NOBAHARI H , NASROLLAHI S . A terminal guidance algorithm based on ant colony optimization[J]. Computers and Electrical Engineering, 2019, 77, 128- 146.
doi: 10.1016/j.compeleceng.2019.05.012 |
10 |
GAO W F , LUO Y T , XU J W , et al. Evolutionary algorithm with multiobjective optimization technique for solving nonlinear equation systems[J]. Information Sciences, 2020, 541, 345- 361.
doi: 10.1016/j.ins.2020.06.042 |
11 | SONG W , WANG Y , LI H X , et al. Locating multiple optimal solutions of nonlinear equation systems based on multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2014, 19 (3): 414- 431. |
12 |
DEB K , PRATAP A , AGRAWAL S , et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2): 182- 197.
doi: 10.1109/4235.996017 |
13 |
GONG W Y , WANG Y , CAI Z H , et al. A weighted biobjective transformation technique for locating multiple optimal solutions of nonlinear equation systems[J]. IEEE Transactions on Evolutionary Computation, 2017, 21 (5): 697- 713.
doi: 10.1109/TEVC.2017.2670779 |
14 |
JI J Y , WONG M L . Decomposition-based multiobjective optimization for nonlinear equation systems with many and infinitely many roots[J]. Information Sciences, 2022, 610, 605- 623.
doi: 10.1016/j.ins.2022.07.187 |
15 |
LIANG Z P , WU T C , MA X L , et al. A dynamic multiobjective evolutionary algorithm based on decision variable classification[J]. IEEE Transactions on Cybernetics, 2022, 52 (3): 1602- 1615.
doi: 10.1109/TCYB.2020.2986600 |
16 |
ZHANG K , SHEN C N , LIU X M , et al. Multiobjective evolution strategy for dynamic multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2020, 24 (5): 974- 988.
doi: 10.1109/TEVC.2020.2985323 |
17 | WANG J H , LIANG G X , ZHANG J . Cooperative differential evolution framework for constrained multiobjective optimization[J]. IEEE Transactions on Cybernetics, 2018, 49 (6): 2060- 2072. |
18 | LUO B, ZHENG J H, XIE J L, et al. Dynamic crowding distance: a new diversity maintenance strategy for MOEAs[C]//2008 Fourth International Conference on Natural Computation. New York: IEEE, 2008: 580-585. |
19 |
LIAO Z W , GONG W Y , WANG L , et al. A decomposition-based differential evolution with reinitialization for nonlinear equations systems[J]. Knowledge-Based Systems, 2020, 191, 105312.
doi: 10.1016/j.knosys.2019.105312 |
20 | 廖作文, 龚文引, 王凌. 基于改进环拓扑混合群体智能算法的非线性方程组多根联解[J]. 中国科学: 信息科学, 2020, 50 (3): 396- 407. |
LIAO Zuowen , GONG Wenyin , WANG Ling . A hybrid swarm intelligence with improved ring topology for nonlinear equations[J]. Scientia Sinica Informationis, 2022, 50 (3): 396- 407. | |
21 | GONG W Y , WANG Y , CAI Z H , et al. Finding multiple roots of nonlinear equation systems via a repulsion-based adaptive differential evolution[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 50 (4): 1499- 1513. |
[1] | Lulu AI,Yunxian LIU. An ultra-weak discontinuous Galerkin method for drift-diffusion model of semiconductor problem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(10): 10-21. |
[2] | Yuling LIU. Structured backward error for a class of generalized saddle point problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(10): 40-45. |
[3] | ALI Adil,RAHMAN Kaysar. Differential quadrature method for solving the generalized Burgers-Fisher equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(10): 30-39. |
[4] | Wenhui DU,Xiangtuan XIONG. Iterated fractional Tikhonov method for simultaneous inversion of the source term and initial data in time-fractional diffusion equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(8): 77-83. |
[5] | Xiumin LYU,Qian GE,Jin LI. Barycentric interpolation collocation method for solving the small-amplitude long-wave scheme generalized BBM-KdV equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(8): 67-76. |
[6] | ZHANG Ru, HAN Xu, LIU Xiao-gang. Convergence and contractivity of boundary value methods for nonlinear delay differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 97-101. |
[7] | LI Cui-ping, GAO Xing-bao. A neural network for solving l1-norm problems with constraints [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 90-98. |
[8] | DING Feng-xia, CHENG Hao. A posteriori choice rule for the mollification regularization parameter for the Cauchy problem of an elliptic equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 18-24. |
[9] | KONG Yi-ting, WANG Tong-ke. The steepest descent method for Fourier integrals involving algebraic and logarithmic singular factors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 50-55. |
[10] | YU Jin-biao, REN Yong-qiang, CAO Wei-dong, LU Tong-chao, CHENG Ai-jie, DAI tao. Expanded mixed finite element method for compressible miscible displacement in heterogeneous porous media [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 25-34. |
[11] | WANG Yang, ZHAO Yan-jun, FENG Yi-fu. On successive-overrelaxation acceleration of MHSS iterations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 61-65. |
[12] | NIE Tian-yang, SHI Jing-tao. The connection between DPP and MP for the fully coupled forward-backward stochastic control systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(5): 121-129. |
[13] | CUI Jian-bin, JI An-zhao, LU Hong-jiang, WANG Yu-feng, HE Jiang-yi, XU Tai. Numerical solution of Schwarz Christoffel transform [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 104-111. |
[14] | LIU Wen-yue, SUN Tong-jun. Iterative non-overlapping domain decomposition method for optimal boundary control problems governed by elliptic equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 21-28. |
[15] | LIU Chun-mei, ZHONG Liu-qiang, SHU Shi, XIAO Ying-xiong. Local multigrid method for higher-order finite element discretizations of elasticity problems in two dimensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 34-39. |
|