JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (10): 10-21.doi: 10.6040/j.issn.1671-9352.0.2023.089
Previous Articles Next Articles
CLC Number:
1 | JEROME J W . Analysis of charge transport[M]. Berlin: Springer-Verlag, 1996: 9- 26. |
2 |
CERCIGNANI C , GAMBA I M , JEROME J W , et al. Device benchmark comparisons via kinetic, hydrodynamic, and high-field models[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 181 (4): 381- 392.
doi: 10.1016/S0045-7825(99)00186-3 |
3 | REED W H, HILL T R. Triangular mesh methods for the neutron transport equation[R/OL]. (1973-10-31)[2023-02-28].https://www.osti.gov/biblio/4491151. |
4 | LESAINT P, RAVIVART P A. On a finite element method for solving the neutron transport equation[EB/OL]. (1974-04-03)[2023-02-28].https://www.sciencedirect.com/science/article/pii/B978012208350150008X. |
5 | COCKBURN B , SHU C W . TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅱ: general framework[J]. Mathematics of Computation, 1989, 52 (186): 411- 435. |
6 | COCKBURN B , HOU S , SHU C W . The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case[J]. Mathematics of Computation, 1990, 54 (190): 545- 581. |
7 |
COCKBURN B , SHU C W . The Runge-Kutta local projection p1-discontinuous Galerkin finite element method for scalar conservation laws[J]. Mathematical Modelling and Numerical Analysis, 1991, 25 (3): 337- 361.
doi: 10.1051/m2an/1991250303371 |
8 |
COCKBURN B , SHU C W . The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems[J]. Journal of Computational Physics, 1998, 141 (2): 199- 224.
doi: 10.1006/jcph.1998.5892 |
9 |
COCKBURN B , SHU C W . The local discontinuous Galerkin method for time dependent convection-diffusion systems[J]. SIAM Journal on Numerical Analysis, 1998, 35 (6): 2440- 2463.
doi: 10.1137/S0036142997316712 |
10 |
LIU Y X , SHU C W . Error analysis of the semi-discrete local discontinuous Galerkin method for semiconductor device simulation models[J]. Science China Mathematics, 2010, 53 (12): 3255- 3278.
doi: 10.1007/s11425-010-4075-7 |
11 |
LIU Y X , SHU C W . Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices[J]. Science China Mathematics, 2016, 59 (1): 115- 140.
doi: 10.1007/s11425-015-5055-8 |
12 |
CESSENAT O , DESPRES B . Application of an ultra weak variational formulation of elliptic PDES to the two-dimensional Helmholtz problem[J]. SIAM Journal on Numerical Analysis, 1998, 35 (1): 255- 299.
doi: 10.1137/S0036142995285873 |
13 | CHENG Y D , SHU C W . A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives[J]. Mathematics of Computation, 2008, 77 (262): 699- 730. |
14 | CIARLET P G . The finite element method for elliptic problems[M]. Paris: Society for Industrial and Applied Mathematics, 2002. |
15 |
SHU C W , OSHER S . Efficient implementation of essentially non-oscillatory shock capturing schemes[J]. Journal of Computational Physics, 1988, 77 (2): 439- 471.
doi: 10.1016/0021-9991(88)90177-5 |
[1] | Yadi WANG,Hailong YUAN. Hopf bifurcation analysis in the Lengyel-Epstein reaction diffusion system with time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 92-103. |
[2] | XIAO Hong-dan, LIU Yun-xian. Local discontinuous Galerkin method and numerical simulation of semiconductor drift-diffusion model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(4): 1-7. |
[3] | REN Jian-long. Reconstruction of unknown surface heat flux from an internal temperature history [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(9): 83-90. |
[4] | CAO Wei-dong, DAI Tao, YU Jin-biao, WANG Xiao-hong, SHI An-feng. Improvement on the solution of pressure equation based on alternating direction in chemical flooding model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 88-94. |
[5] | YU Jin-biao, REN Yong-qiang, CAO Wei-dong, LU Tong-chao, CHENG Ai-jie, DAI tao. Expanded mixed finite element method for compressible miscible displacement in heterogeneous porous media [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 25-34. |
[6] | YANG Wen-bin, LI Yan-ling. Dynamics research in a predator-prey system with a nonlinear growth rate [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(03): 80-87. |
[7] | GUO Lan-lan1,2, GENG Jie1, SHI Shuo1,3, YUAN Fei1, LEI Li1, DU Guang-sheng1*. Computing research of the water hammer pressure in the process of #br# the variable speed closure of valve based on UDF method [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 27-30. |
[8] | LI Hai-xia1,2, LI Yan-ling1. Stability and uniqueness of positive solutions for a food chain model with B-D functional response [J]. J4, 2013, 48(09): 103-110. |
[9] | WANG Yao. Theoretical analysis and numerical simulation of random walk under sinusoidal force field [J]. J4, 2010, 45(9): 74-78. |
[10] | YANG Hong-liang1, ZHANG Fu-chen2*, SHU Yong-lu2, LI Yun-chao3. The ultimate bound and positively invariant set of a new Lorenz-like chaotic system and its application in chaos synchronization [J]. J4, 2010, 45(9): 83-89. |
[11] | TIAN Ming-lu, LIU Yun-xian. The local discontiunous Galerkin method for Cahn-Hilliard equation [J]. J4, 2010, 45(8): 27-31. |
[12] |
ZHANG Xing-gang,KONG Wei-shu .
Theoretical and numerical investigation of elastic string with fixed ends [J]. J4, 2008, 43(10): 71-76 . |
[13] |
YU Jing-zhi,CHEN Huan-zhen,LIU Xiang-zhong .
The mixed finite element method for the unsteady Stokes equation [J]. J4, 2008, 43(10): 85-90 . |
|