JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (10): 64-73, 88.doi: 10.6040/j.issn.1671-9352.0.2023.328
Previous Articles Next Articles
Yiyan WANG(),Dongxia ZHAO*(
),Caixia GAO
CLC Number:
1 | GREENSHIELDS B D, BIBBINS J R, CHANNING W S, et al. A study of traffic capacity[C]//Highway Research Board Proceedings. Washington, D. C. : Highway Research Board, 1935, 14(2): 448-477. |
2 |
AW A , RASCLE M . Resurrection of "second order" models of traffic flow[J]. SIAM Journal on Applied Mathematics, 2000, 60 (3): 916- 938.
doi: 10.1137/S0036139997332099 |
3 |
ZHANG H M . A non-equilibrium traffic model devoid of gas-like behavior[J]. Transportation Research Part B: Methodological, 2002, 36 (3): 275- 290.
doi: 10.1016/S0191-2615(00)00050-3 |
4 | BASTIN G , CORON J M . Stability and boundary stabilization of 1-D hyperbolic systems[M]. Cham, Switzerland: Springer, 2016: 31- 33. |
5 |
LI Zhibin , XU Chengheng , LI Dawei , et al. Comparing the effects of ramp metering and variable speed limit on reducing travel time and crash risk at bottlenecks[J]. IET Intelligent Transport Systems, 2018, 12 (2): 120- 126.
doi: 10.1049/iet-its.2017.0064 |
6 | YU H , KRSTIC M . Traffic congestion control by PDE backstepping[M]. Cham, Switzerland: Springer, 2022: 87- 111. |
7 |
BURKHARDT M , YU H , KRTIC M . Stop-and-go suppression in two-class congested traffic[J]. Automatica, 2021, 125, 109381.
doi: 10.1016/j.automatica.2020.109381 |
8 |
FRANCOIS B , MANDAY H , XAVIER L , et al. Prediction of traffic convective instability with spectral analysis of the Aw-Rascle-Zhang model[J]. Physics Letters A, 2015, 379 (38): 2319- 2330.
doi: 10.1016/j.physleta.2015.05.019 |
9 | ZHANG L G , PRIEUR C , QIAO J F . PI boundary control of linear hyperbolic balance laws with stabilization of ARZ traffic flow models[J]. Systems & Control Letters, 2019, 123, 85- 91. |
10 |
ZHAO Dongxia , WANG Junmin . Exponential stability and spectral analysis of the inverted pendulum system under two delayed position feedbacks[J]. Journal of Dynamical and Control Systems, 2012, 18 (2): 269- 295.
doi: 10.1007/s10883-012-9143-6 |
11 | CHENTOUF B, SMAOUI N. Time-delayed feedback control of a hydraulic model governed by a diffusive wave system[J/OL]. Complexity, 2020[2023-07-10]. https://doi.org/10.1155/2020/4986026. |
12 | 范东霞, 赵东霞, 史娜, 等. 一类扩散波方程的PDP反馈控制和稳定性分析[J]. 数学物理学报, 2021, 41 (4): 1088- 1096. |
FAN Dongxia , ZHAO Dongxia , SHI Na , et al. PDP feedback control and stability analysis for a class of diffusion wave equations[J]. Journal of Mathematical Physics, 2021, 41 (4): 1088- 1096. | |
13 |
YU H , KRSTIC M . Traffic congestion control of Aw-Rascle-Zhang model[J]. Automatica, 2019, 100, 38- 51.
doi: 10.1016/j.automatica.2018.10.040 |
14 |
DIAGNE A , BASTIN G , CORON J M . Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws[J]. Automatica, 2012, 48 (1): 109- 114.
doi: 10.1016/j.automatica.2011.09.030 |
|