JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (12): 130-140.doi: 10.6040/j.issn.1671-9352.7.2023.5296
WANG Tinghua, HU Zhenwei, ZHAN Hongxiang
CLC Number:
[1] CAI Jie, LUO Jiawei, WANG Shulin, et al. Feature selection in machine learning: a new perspective[J]. Neurocomputing, 2018, 300:70-79. [2] 许行,张凯,王文剑. 一种小样本数据的特征选择方法[J]. 计算机研究与发展,2018,55(10):2321-2330. XU Hang, ZHANG Kai, WANG Wenjian. A feature selection method for small samples[J]. Journal of Computer Research and Development, 2018, 55(10):2321-2330. [3] HUANG Rui, WU Zhejun. Multi-label feature selection via manifold regularization and dependence maximization[J]. Pattern Recognition, 2021, 120(8):108149. [4] SOLORIO-FERNÁNDEZ S, CARRASCO-OCHOA J, MARTÍNEZ-TRINIDAD J. A review of unsupervised feature selection methods[J]. Artificial Intelligence Review, 2020, 53(2):907-948. [5] AGGARWAL C, REDDY K. Data clustering[M]. New York: Chapman and Hall, 2014:29-60. [6] LI Jundong, CHENG Kewei, WANG Suhang, et al. Feature selection: a data perspective[J]. ACM Computing Surveys, 2017, 50(6):1-45. [7] SONG L, SMOLA A, GRETTON A, et al. Feature selection via dependence maximization[J]. Journal of Machine Learning Research, 2012, 13(5):1393-1434. [8] SONG L, BEDO J, BORGWARDT K M, et al. Gene selection via the BAHSIC family of algorithms[J]. Bioinformatics, 2007, 23(13):i490-i498. [9] 刘艳芳,李文斌,高阳. 基于自适应邻域嵌入的无监督特征选择算法[J]. 计算机研究与发展,2020,57(8):1639-1649. LIU Yanfang, LI Wenbin, GAO Yang. Adaptive neighborhood embedding based unsupervised feature selection[J]. Journal of Computer Research and Development, 2020, 57(8):1639-1649. [10] LIAGHAT S, MANSOORI E. Filter-based unsupervised feature selection using Hilbert-Schmidt independence criterion[J]. International Journal of Machine Learning and Cybernetics, 2019, 10(9):2313-2328. [11] LUO Minna, NIE Feiping, CHANG Xiaojun, et al. Adaptive unsupervised feature selection with structure regularization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29(4):944-956. [12] GUYON I, ELISSEEFF A. An introduction to variable and feature selection[J]. Journal of Machine Learning Research, 2003, 3:1157-1182. [13] DEVAKUMARI D, THANGAVEL K. Unsupervised adaptive floating search feature selection based on contribution entropy[C] //Proceedings of the International Conference on Communication and Computational Intelligence. Erode, India: IEEE, 2010:623-627. [14] HUANG Rui, JIANG Weidong, SUN Guangling. Manifold-based constraint Laplacian score for multi-label feature selection[J]. Pattern Recognition Letters, 2018, 112:346-352. [15] MA Rui, WANG Yijie, CHENG Li. Feature selection on data stream via multi-cluster structure preservation[C] //Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020:1065-1074. [16] YANG Meng, SHANG Ronghua, JIAO Licheng, et al. Feature selection based dual-graph sparse non-negative matrix factorization for local discriminative clustering[J]. Neurocomputing, 2018, 290:87-99. [17] YANG Yi, SHEN Hengtao, MA Zhigang, et al. l2,1-norm regularized discriminative feature selection for unsupervised learning[C] //Proceedings of the 22th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann, 2011:1589-1594. [18] ZHU Pengfei, XU Qian, HU Qinghua, et al. Co-regularized unsupervised feature selection[J]. Neurocomputing, 2018, 275:2855-2863. [19] BEHURA A. Data analytics in bioinformatics: a machine learning perspective, Massachusetts[M]. Beverly, Massachusetts: Scrivener Publishing, 2021:249-280. [20] YAN X, NAZMI S, EROL B A, et al. An efficient unsupervised feature selection procedure through feature clustering[J]. Pattern Recognition Letters, 2020, 131:277-284. [21] 张晨光,张燕,张夏欢. 最大规范化依赖性多标记半监督学习方法[J]. 自动化学报,2015,41(9):1577-1588 ZHANG Chenguang, ZHANG Yan, ZHANG Xiahuan. Maximum normative-dependent multilabel semi-supervised learning methods[J]. Acta Automatica Sinica, 2015, 41(9):1577-1588. [22] GRETTON A, BOUSQUET O, SMOLA A, et al. Measuring statistical dependence with Hilbert-Schmidt norms[C] //Proceedings of the 16th International Conference on Algorithmic Learning Theory. Berlin: Springer-Verlag, 2005, 63-77. [23] WANG Tinghua, DAI Xiaolu, LIU Yuze. Learning with Hilbert-Schmidt independence criterion: a review and new perspectives[J]. Knowledge-based Systems, 2021, 234:107567. [24] 王博,黄九鸣,贾焰,等. 适用于多种监督模型的特征选择方法研究[J]. 计算机研究与发展,2010,47(9):1548-1557. WANG Bo, HUANG Jiuming, JIA Yan, et al. A study of feature selection methods applicable to multiple supervised models[J]. Journal of Computer Research and Development, 2010, 47(9):1548-1557. [25] 胡振威,汪廷华,周慧颖. 基于核统计独立性准则的特征选择研究综述[J]. 计算机工程与应用,2022,58(22):54-64. HU Zhenwei, WANG Tinghua, ZHOU Huiying. A review of feature selection methods based on kernel statistical independence criteria[J]. Computer Engineering and Applications, 2022,58(22):54-64. [26] ABUGABAH A, ALZUBI A A, AL-OBEIDAT F, et al. Data mining techniques for analyzing healthcare conditions of urban space-person lung using meta-heuristic optimized neural networks[J]. Cluster Computing, 2020, 23(3):1781-1794. [27] REN Weijie, LI Baisong, HAN Min. A novel granger causality method based on HSIC-Lasso for revealing nonlinear relationship between multivariate time series[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 541:123245. [28] JO I, LEE S, OH S. Improved measures of redundancy and relevance for mRMR feature selection[J]. Computers, 2019, 8(2):42. [29] 刘吉超,王锋. 基于Relief-F的半监督特征选择算法[J]. 郑州大学学报(理学版),2021,53(1):42-46. LIU Jichao, WANG Feng. A semi supervised feature selection algorithm based on Relief-F[J]. Journal of Zhengzhou University(Natural Science Edition), 2021, 53(1):42-46. [30] SINAGA K P, YANG M S. Unsupervised k-means clustering algorithm[J]. IEEE Access, 2020, 8:80716-80727. [31] UCI machine learning repository[DB/OL]. [2022-12-29]. http://archive.ics.uci.edu/ml/index.php. |
[1] | Yiran LI,Ning ZHAO,Zhijian ZHANG. Prediction of average queue time in multi-server tandem queueing systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(1): 17-26. |
[2] | ZHANG Jie, PENG Guo-jun, YANG Xiu-zhang. Malicious evasion sample detection based on dynamic API call sequence and machine learning [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(7): 85-93. |
[3] | LI Ying, ZHANG Guo-lin. Modeling for dissolved gases concentration based on mutual information and kernel entropy component analysis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(7): 43-52. |
[4] | An-min ZHOU,Lei HU,Lu-ping LIU,Peng JIA,Liang LIU. Malicious Office document detection technology based on entropy time series [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(5): 1-7. |
[5] | LIU Ming, ZAN Hong-ying, YUAN Hui-bin. Key sentiment sentence prediction using SVM and RNN [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(11): 68-73. |
[6] | PAN Qing-qing, ZHOU Feng, YU Zheng-tao, GUO Jian-yi, XIAN Yan-tuan. Recognition method of Vietnamese named entity based on#br# conditional random fields [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(1): 76-79. |
[7] | DU Rui-ying, YANG Yong, CHEN Jing, WANG Chi-heng. An efficient network traffic classification scheme based on similarity [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(09): 109-114. |
[8] | SUN Zhong-gui1, CHEN Jie2. Improvement for non-local means using data driven kernel [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 24-27. |
[9] | DONG Yuan1, XU Ya-bin1,2*, LI Zhuo1,2, LI Yan-ping1. Research on spam identification based on social computing and machine learning [J]. J4, 2013, 48(7): 72-78. |
[10] | HUANG Lin-sheng1, DENG Zhi-hong1,2, TANG Shi-wei1,2, WANG Wen-qing3, CHEN Ling3. A Chinese organization′s full name and matching abbreviation algorithm based on edit-distance [J]. J4, 2012, 47(5): 43-48. |
[11] | WANG Peng-ming, ZHONG Mao-sheng, LIU Zun-xiong. Multiple kernel learning in denoising space [J]. J4, 2012, 47(5): 49-52. |
[12] | WAN Hai-ping,HE Hua-can,ZHOU Yan-quan . Locality preserving kernel method and its application [J]. J4, 2006, 41(3): 18-20 . |