JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (12): 50-58.doi: 10.6040/j.issn.1671-9352.0.2019.100

Previous Articles    

Nonlinear Jordan higher derivable maps on triangular algebras by Lie product square zero elements

FEI Xiu-hai1, DAI Lei2, ZHU Guo-wei1   

  1. 1. School of Mathematics and Physics, Dianxi Science and Technology Normal University, Lincang 677099, Yunnan, China;
    2. School of Mathematics and Statistics, Weinan Normal University, Weinan 714099, Shaanxi, China
  • Published:2019-12-11

Abstract: Let U be a 2-torsion free triangular algebra, D={dn}n∈N is a nonlinear Jordan higher derivable map on triangular algebra U by Lie product square zero elements. In this paper, it is shown that every nonlinear Jordan higher derivable map on triangular algebra U by Lie product square zero elements is a higher derivation. As its application, we get that every nonlinear Jordan higher derivable map on a nest algebra or a 2-torsion free block upper triangular matrix algebra U by Lie product square zero elements is a higher derivation.

Key words: triangular algebra, higher derivation, Jordan higher derivation, square zero element

CLC Number: 

  • O177.1
[1] ZHU Jun, XIONG Changping. All-derivable points in continuous nest algebras[J]. J Math Anal Appl, 2008, 340(2): 845-853.
[2] ZHAO Jinping, ZHU Jun. Jordan higher all-derivable points in triangular algebras[J]. Linear Algebra Appl, 2012, 436(9): 3072-3086.
[3] HUANG Wenbo, LI Jiankui, HE Jun. Characterizations of Jordan mappings on some rings and algebras through zero products[J]. Linear and Multilinear Algebra, 2017, 60(2): 167-180.
[4] WU Jin, LU Fangyan. Lie derivable mappings on prime rings[J]. Linear and Multilinear Algebra, 2012, 60(2):167-180.
[5] LU Fangyan, LIU Benhong. Lie derivable maps on B(X)[J]. J Math Anal Appl, 2010, 372(2): 369-376.
[6] ZHANG Jianhua,YU Weiyan. Jordan derivations of triangular algebras[J]. Linear Algebra Appl, 2006, 419(1): 251-255.
[7] XIAO Zhankui, WEI Feng. Jordan higher derivations on triangular algebras[J]. Linear Algebra Appl, 2010, 432(10): 2615-2622.
[8] CHEUNG W S. Lie derivations of triangular algebras[J]. Linear and Multilinear Algebra, 2003, 51(3): 299-310.
[9] JI Peisheng, QI Weiqing. Characterizations of Lie derivations of triangular algebras[J]. Linear Algebra Appl, 2011, 435(9): 1137-1146.
[10] YU Weiyan, ZHANG Jianhua. Nonlinear Lie derivations of triangular algebras[J]. Linear Algebra Appl, 2010, 432(11): 2953-2960.
[11] XIAO Zhankui, WEI Feng. Nonlinear Lie higher derivations on triangular algebras[J]. Linear and Multilinear Algebra, 2012, 60(8): 979-994.
[12] FEI Xiuhai, ZHANG Jianhua. Nonlinear generalized Lie derivations of triangular algebras[J]. Linear and Multilinear Algebra, 2017, 65(6): 1158-1170.
[13] WANG Long. Nonlinear mappings on full matrices derivable at zero point[J]. Linear and Multilinear Algebra, 2016, 56(11): 725-730.
[14] WONG Dein, MA Xiaobin, CHEN Li. Nonlinear mappings on upper triangular matrices derivable at zeropoint[J]. Linear Algebra Appl, 2015, 65(11): 236-248.
[15] 孟利花, 张建华. 三角代数上的一类非全局三重可导映射[J].数学学报, 2017, 60(6): 955-960. MENG Lihua, ZHANG Jianhua. A class of non-global triple derivable maps on triangular algebra[J]. Acta Math Sinica, 2017, 47(1):119-124.
[16] 武鹂, 张建华. 三角代数上 Lie 积为平方零元的非线性 Jordan 可导映射[J].山东大学学报(理学版), 2017, 52(12): 42-47. WU Li, ZHANG Jianhua. Nonlinear Jordan derivable maps on triangular algebras by Lie product square zero elements[J]. Journal of Shandong University(Natural Science), 2017, 52(12): 42-47.
[1] FEI Xiu-hai, ZHANG Jian-hua. Linear maps on triangular algebras for which the space of all inner derivations is Lie invariant [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(2): 79-83.
[2] ZHANG Xia, ZHANG Jian-hua. Higher ξ-Lie derivable maps on triangular algebras at reciprocal elements [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 79-84.
[3] WU Li, ZHANG Jian-hua. Nonlinear Jordan derivable maps on triangular algebras by Lie product square zero elements [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 42-47.
[4] HU Li-xia, ZHANG Jian-hua. Lie higher derivable mappings of triangular algebras at zero points [J]. J4, 2013, 48(4): 5-9.
[5] JI Pei-sheng,QI Wei-qing,LIU Zhong-yan . Jordan ideals in triangular algebras of type II1 hyper-finite factors [J]. J4, 2008, 43(4): 6-08 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!