JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (2): 96-104.doi: 10.6040/j.issn.1671-9352.0.2024.021

Previous Articles    

Estimation of multiple change points for censored quantile regression model

LI Xuewen1, FENG Kexin2, WANG Xiaogang2*   

  1. 1. School of Business, North Minzu University, Yinchuan 750021, Ningxia, China;
    2. School of Mathematics and Information Science, North Minzu University, Yinchuan 750021, Ningxia, China
  • Published:2025-02-14

Abstract: To simultaneously estimate the number of change points, the location of change points and the model parameters in censored quantile regression model, a linearization technique is employed to obtain estimators for above parameters. This approach overcomes the issues of non-differentiability and non-convexity objective function at the change points. It is capable of capturing the relationship between response and covariate of interest that changes across multiple change points. Furthermore, the proposed estimators strike a balance between flexibility and interpretability, making them become a useful tool for identifying and explaining change points. Simulation studies show that the estimators demonstrate robustness in both homoscedastic and heteroscedastic conditions across various quantile levels. An empirical analysis reveals the existence of two change points and their change point effects.

Key words: estimation multiple change point, censored data, quantile regression model, linearization technique

CLC Number: 

  • O212.2
[1] KOENKER R, BASSETT G. Regression quantiles[J]. Econometrica, 1978, 46(1):211-244.
[2] POWELL J L. Least absolute deviations estimation for the censored regression model[J]. Journal of Econometrics, 1984, 23(3):303-325.
[3] POWELL J L. Censored regression quantiles[J]. Journal of Econometrics, 1986, 32(1):143-155.
[4] PORTNOY S. Censored quantile regression[J]. Journal of American Statistical Association, 2003, 98(464):1001-1012.
[5] FRUMENTO P, BOTTAI M. An estimating equation for censored and truncated quantile regression[J]. Computational Statistics and Data Analysis, 2016, 113:53-63.
[6] CHEN Songnian. Sequential estimation of censored quantile regression models[J]. Journal of Econometrics, 2018, 207(1):30-52.
[7] JIA Y C, JEONG J H. Deep learning for quantile regression under right censoring: DeepQuantreg[J]. Computational Statistics and Data Analysis, 2022, 165:107323.
[8] NARISETTY N,KOENKER R. Censored quantile regression survival models with a cure proportion[J]. Journal of Econome-trics, 2022, 261(1):192-203.
[9] ZHANG Feipeng, LI Qunhua. A continuous threshold expectile model[J]. Computational Statistics and Data Analysis, 2017, 116:49-66.
[10] WANG Xiaogang, ZHOU Xiaoying, LI Bing, et al. A bent line Tobit regression model with application to household financial assets[J]. Journal of Statistical Planning and Inference, 2022, 221:69-80.
[11] ZHOU Xiaoying, ZHANG Feipeng. Bent line quantile regression via a smoothing technique[J]. Statistical Analysis and Data Mining, 2020, 13(3):216-228.
[12] 王小刚,李冰. 基于核函数方法的逐段线性Tobit回归模型估计[J]. 山东大学学报(理学版),2020,55(6):1-9. WANG Xiaogang, LI Bing. Piecewise linear Tobit regression model estimation based on kernel function method[J]. Journal of Shandong University(Natural Science), 2020, 55(6):1-9.
[13] MUGGEO V M R. Estimating regression models with unknown break-points[J]. Statistics in Medicine, 2003, 22(19):3055-3071.
[14] YAN Yanyang, ZHANG Feipeng, ZHOU Xiaoying. A note on estimating the bent line quantile regression model[J]. Computational Statistics, 2017, 32(2):661-630.
[15] MUGGEO V M R, ADELFIO G. Efficient change point detection for genomic sequences of continuous measurements[J]. Bioinformatics, 2011, 27(2):161-166.
[16] 龙振环,张飞鹏,周小英. 带多个变点的逐段连续线性分位数回归模型及应用[J]. 数量经济技术经济研究,2017,34(8):150-161. LONG Zhenhuan, ZHANG Feipeng, ZHOU Xiaoying. A continuous piecewise linear quantile regression with multiple change points[J]. The Journal of Quantitative and Technical Economics, 2017, 34(8):150-161.
[17] ZHONG Wei, WAN Chuang, ZHANG Wenyang. Estimation and inference for multi-kink quantile regression[J]. Journal of Business and Economic Statistics, 2021, 40(3):1123-1139.
[18] 王小刚,李冰. 含多个结构突变的分段线性Tobit回归模型及应用[J]. 统计与决策,2021,37(19):21-25. WANG Xiaogang, LI Bing. Piecewise linear Tobit regression model with multiple change points and application[J]. Statistics and Decision, 2021, 37(19):21-25.
[19] 曾毅,沈可. 中国老年人口多维度健康状况分析[J]. 中华预防医学,2010,34(2):108-114. ZENG Yi, SHEN Ke. Main dimensions of health status among the Chinese elderly[J]. Chinese Journal of Preventive Medicine, 2010, 34(2):108-114.
[1] Shuying WANG,Yanan ZHANG,Yunfei CHENG,Lifang ZHOU. Model averaging study with a cured group right-censored data [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(4): 108-116.
[2] Xiaogang WANG,Kexin FENG. Change point estimation of piecewise linear censored quantile regression model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(11): 35-44.
[3] SUI Yun-yun, HU Jiang-shan, MA Shu-cai, FU Yun-peng. Parameter estimation of linear exponential distribution based on truncated and censored data [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(6): 10-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!