JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (4): 40-49.doi: 10.6040/j.issn.1671-9352.0.2024.184
LI Siyu, YANG Yunrui*
CLC Number:
[1] 叶其孝,李正元,王明新,等. 反应扩散方程引论[M]. 2版. 北京:科学出版社,2011. YE Qixiao, LI Zhengyuan, WANG Mingxin, et al. Introduction to reaction-diffusion equations [M]. 2nd ed. Beijing: Science Press, 2011. [2] HSU C H, YANG T S. Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models [J]. Nonlinearity, 2013, 26:121-139. [3] ARONSON D G, WEINBERGER H F. Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation[M] //Lecture Notes in Mathematics. Berlin:Springer, 1975:5-49. [4] BATES P W, FIFE P C, REN Xiao feng, et al. Traveling waves in a convolution model for phase transitions[J]. Archive for Rational Mechanics and Analysis, 1997, 138(2):105-136. [5] YU Zhixian, WAN Yuji, HSU Cheng-hsiung. Wave propagation and its stability for a class of discrete diffusion systems[J]. Zeitschrift Für Angewandte Mathematik und Physik, 2020, 71(6):194. [6] XU Dashun, ZHAO Xiaoqiang. Bistable waves in an epidemic model[J]. Journal of Dynamics and Differential Equations, 2004, 16(3):679-707. [7] 吴事良. 非局部时滞反应扩散方程的行波解和渐近传播速度[D]. 西安:西安电子科技大学,2009. WU Shiliang. Traveling wave solutions and asymptotic propagation velocity of nonlocal delay reaction-diffusion equations[D]. Xian:Xidian University, 2009 [8] COVILLE Jérôme, DUPAIGNE Louis. Propagation speed of travelling fronts in non local reaction-diffusion equations[J]. Nonlinear Analysis: Theory, Methods & Applications, 2005, 60(5):797-819. [9] COVILLE Jérôme. On uniqueness and monotonicity of solutions of non-local reaction diffusion equation[J]. Annali Di Matematica Pura Ed Applicata, 2006, 185(3):461-485. [10] 李孝武,杨赟瑞,刘凯凯. 一类时滞非局部扩散SVIR模型单稳行波解的稳定性[J]. 浙江大学学报(理学版),2023,50(3):273-286. LI Xiaowu, YANG Yunrui, LIU Kaikai. Stability of monostable traveling waves for a class of SVIR models with nonlocal diffusion and delay[J]. Journal of Zhejiang University(Science Edition), 2023, 50(3):273-286. [11] ZHANG Guobao, ZHAO Xiaoqiang. Propagation phenomena for a two-species Lotka-Volterra strong competition system with nonlocal dispersal[J]. Calculus of Variations and Partial Differential Equations, 2019, 59(1):10. [12] 郝玉财. 两类非局部扩散系统行波解的稳定性[D]. 兰州:西北师范大学,2022. HAO Yucai. Stability of traveling wave solutions for two kinds of nonlocal diffusion systems[D]. Lanzhou:Northwest Normal University, 2022. [13] CHEN Xinfu. Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations[J]. Advances in Differential Equations, 1997, 2(1):125-160. [14] HAO Yucai, ZHANG Guobao. Global stability of bistable traveling wavefronts for a three-species Lotka-Volterra competition system with nonlocal dispersal[J]. International Journal of Biomathematics, 2023, 16(5):22250106. [15] LIU Kaikai, YANG Yunrui. Global stability of traveling waves for a SIR model with nonlocal dispersal and delay[J]. Journal of Mathematical Physics, 2022, 63(2):021504. [16] YANG Lu, YANG Yunrui, SONG Xue. Traveling waves in a SIRH model with spatio-temporal delay and nonlocal dispersal[J]. Acta Mathematica Scientia, 2022, 42(2):715-736. [17] COVILLE Jérôme. Travelling fronts in asymmetric nonlocal reaction diffusion equations: the bistable and ignition cases[J]. Prépublication du CMM, Hal-00696208. [18] COVILLE Jérôme, DÁVILA Juan, MARTÍNEZ Salomé. Nonlocal anisotropic dispersal with monostable nonlinearity[J]. Journal of Differential Equations, 2008, 244(12):3080-3118. [19] LI Wantong, XU Wenbing, ZHANG Liang. Traveling waves and entire solutions for an epidemic model with asymmetric dispersal[J]. Discrete and Continuous Dynamical Systems, 2017, 37(5):2483-2512. [20] HU Ruyue, LI Wantong, XU Wenbing. Propagation phenomena for man-environment epidemic model with nonlocal dispersals[J]. Journal of Nonlinear Science, 2022, 32(5):67. [21] 杨璐. 两类时滞非局部扩散传染病系统的行波解研究[D]. 兰州:兰州交通大学,2022. YANG Lu. Study on traveling wave solutions of two kinds of non-local diffusion infectious disease systems with time delay[D]. Lanzhou: Lanzhou Jiatong University, 2022. [22] WENG Peixuan, ZHAO Xiaoqiang. Spreading speed and traveling waves for a multi-type SIS epidemic model[J]. Journal of Differential Equations, 2006, 229(1):270-296. [23] 王高雄. 常微分方程[M]. 3版. 北京:高等教育出版社,2006. Wang Gaoxiong. Ordinary differential equation[M]. 3rd ed. Beijing: Higher Education Press, 2006. [24] ZHAO Xiaoqiang. Dynamical systems in population biology[M]. New York: Springer, 2003. |
[1] | MAI Ali, SUN Guowei. Stability analysis of predator-prey metacommunity model with predator dispersal between patches [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2025, 60(4): 20-28. |
[2] | Wenhui DU,Xiangtuan XIONG. Iterated fractional Tikhonov method for simultaneous inversion of the source term and initial data in time-fractional diffusion equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(8): 77-83. |
[3] | Hui MIAO,Xamxinur ABDURAHMAN. Dynamic behaviors analysis of delayed HIV model with cell-to-cell transmissions and protease inhibitors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(4): 90-97. |
[4] | Zheng XIN,Dingguo WANG,Tiwei ZHAO. Stability function and torsion theory on exact categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(2): 105-109. |
[5] | Yiyan WANG,Dongxia ZHAO,Caixia GAO. On ramp control of ARZ traffic flow model based on time-delay feedback [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(10): 64-73, 88. |
[6] | Yuling LIU. Structured backward error for a class of generalized saddle point problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(10): 40-45. |
[7] | ALI Adil,RAHMAN Kaysar. Differential quadrature method for solving the generalized Burgers-Fisher equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(10): 30-39. |
[8] | Yadi WANG,Hailong YUAN. Hopf bifurcation analysis in the Lengyel-Epstein reaction diffusion system with time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 92-103. |
[9] | Yun NI,Xiping LIU. Existence and Ulam stability for positive solutions of conformable fractional coupled systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 82-91. |
[10] | Zipeng HE,Yaying DONG. Steady-state solutions of a Holling type Ⅱ competition model in heterogeneous environment [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 73-81. |
[11] | Yuwen HU,Jiucheng XU,Qianqian ZHANG. Lyapunov stability of decision evolution set [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(7): 52-59. |
[12] | Yun LIU,Pengjun ZHU,Luyao CHEN,Kai SONG. Optimization of blockchain sharding by profit incentive algorithm based on edge computing [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(7): 88-96. |
[13] | HUANG Yu, GAO Guang-hua. Compact difference schemes for the fourth-order parabolic equations with the third Dirichlet boundary [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(4): 16-28. |
[14] | Gaihui GUO,Jingjing WANG,Wangrui LI. Hopf bifurcation of a vegetation-water reaction-diffusion model with time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 32-42, 53. |
[15] | Yonghua LI,Cunhua ZHANG. Stability of a single population delayed reaction-diffusion model with Dirichlet boundary condition [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 122-126. |
|