JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (4): 72-83.doi: 10.6040/j.issn.1671-9352.0.2023.338
LUO Yihua, DU Yanfei*
CLC Number:
[1] MOFFAT C E, LALONDE R G, ENSING D J, et al. Frequency-dependent host species use by a candidate biological control insect within its native European range[J]. Biological Control, 2013, 67(3):498-508. [2] OWEN M R, LEWIS M A. How predation can slow, stop or reverse a prey invasion[J]. Bulletin of Mathematical Biology, 2001, 63(4):655-684. [3] FAGAN W F, LEWIS M A, NEUBERT M G, et al. Invasion theory and biological control[J]. Ecology Letters, 2002, 5(1):148-157. [4] MAGAL C, COSNER C, RUAN S, et al. Control of invasive hosts by generalist parasitoids[J]. Mathematical Medicine and Biology, 2008, 25(1):1-20. [5] CROWDER D W, SNYDER W E. Eating their way to the top? Mechanisms underlying the success of invasive insect generalist predators[J]. Biological Invasions, 2010, 12:2857-2876. [6] XIANG Chuang, HUANG Jicai, RUAN Shigui, et al. Bifurcation analysis in a host-generalist parasitoid model with Holling II functional response[J]. Journal of Differential Equations, 2020, 268(8):4618-4662. [7] ERBACH A, LUTSCHER F, SEO G. Bistability and limit cycles in generalist predator-prey dynamics[J]. Ecological Complexity, 2013, 14:48-55. [8] CHAKRABORTY S. The influence of generalist predators in spatially extended predator-prey systems[J]. Ecological Complexity, 2015, 23:50-60. [9] MADEC S, CASAS J, BARLES G, et al. Bistability induced by generalist natural enemies can reverse pest invasions[J]. Journal of Mathematical Biology, 2017, 75:543-575. [10] FURTER J, GRINFELD M. Local vs. non-local interactions in population dynamics[J]. Journal of Mathematical Biology, 1989, 27:65-80. [11] CHEN Shanshan, YU Jianshe. Stability and bifurcation on predator-prey systems with nonlocal prey competition[J]. Discrete and Continuous Dynamical Systems, 2018, 38(1):43-62. [12] WU Shuhao, SONG Yongli. Stability and spatiotemporal dynamics in a diffusive predator-prey model with nonlocal prey competition[J]. Nonlinear Analysis: Real World Applications, 2019, 48:12-39. [13] YANG Feng, SONG Yongli. Stability and spatiotemporal dynamics of a diffusive predator-prey system with generalist predator and nonlocal intraspecific competition[J]. Mathematics and Computers in Simulation, 2022, 194:159-168. [14] LIU Yaqi, DUAN Daifeng, NIU Ben. Spatiotemporal dynamics in a diffusive predator-prey model with group defense and nonlocal competition[J]. Applied Mathematics Letters, 2020, 103:106175. [15] GENG Dongxu, JIANG Weihua, LOU Yuan, et al. Spatiotemporal patterns in a diffusive predator-prey system with nonlocal intraspecific prey competition[J]. Studies in Applied Mathematics, 2022, 148(1):396-432. [16] SHEN Zuolin, LIU Yang, WEI Junjie. Double Hopf bifurcation in nonlocal reaction-diffusion systems with spatial average kernel[J]. Discrete and Continuous Dynamical Systems B, 2023, 28(4):2424-2462. [17] YANG Ruizhi, WANG Fatao, JIN Dan. Spatially inhomogeneous bifurcating periodic solutions induced by nonlocal competition in a predator-prey system with additional food[J]. Mathematical Methods in the Applied Sciences, 2022, 45(16):9967-9978. [18] KUANG Y. Delay differential equations: with applications in population dynamics[M]. New York: Academic Press, 1993. [19] LIU Zhihua, YUAN Rong. Stability and bifurcation in a delayed predator-prey system with Beddington-DeAngelis functional response[J]. Journal of Mathematical Analysis and Applications, 2004, 296(2):521-537. [20] BERETTA E, KUANG Y. Global analyses in some delayed ratio-dependent predator-prey systems[J]. Nonlinear Analysis: Theory, Methods & Applications, 1998, 32(3):381-408. [21] MARTIN A, RUAN S. Predator-prey models with delay and prey harvesting[J]. Journal of Mathematical Biology, 2001, 43:247-267. [22] HASSARD B D, KAZARINOFF N D, WAN Y H. Theory and applications of Hopf bifurcation[M]. Cambridge: Cambridge University Press, 1981. |
[1] | Yadi WANG,Hailong YUAN. Hopf bifurcation analysis in the Lengyel-Epstein reaction diffusion system with time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 92-103. |
[2] | XU Yue, HAN Xiaoling. Impact of media effects with dual delays on control of echinococcosis in Tibet [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(5): 53-62. |
[3] | Gaihui GUO,Jingjing WANG,Wangrui LI. Hopf bifurcation of a vegetation-water reaction-diffusion model with time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 32-42, 53. |
[4] | Wenyan LIU,Shuai QIAO,Chenghua GAO. Global dynamics analysis of a class of Filippov-type HR neuron model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 13-23. |
[5] | Lei LI,Yongsheng YE. Exponential stability of reaction-diffusion Cohen-Grossberg neural networks with Dirichlet boundary conditions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 67-74. |
[6] | HUO Lin-jie, ZHANG Cun-hua. Stability and Hopf bifurcation of diffusive predator-prey system with Holling-Ⅲ type functional response [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(1): 16-24. |
[7] | PANG Yu-ting, ZHAO Dong-xia, BAO Fang-xia. Stability of the bidirectional ring networks with multiple time delays and multiple parameters [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(8): 103-110. |
[8] | SHEN Wei, ZHANG Cun-hua. Multiple stability switches and Hopf bifurcation in a time-delay predator-prey system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(1): 42-49. |
[9] | WEI Li-xiang, ZHANG Jian-gang, NAN Meng-ran, ZHANG Mei-jiao. Stability and Hopf bifurcation of a flux neuron model with time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(5): 12-22. |
[10] | QIAO Shuai, AN Xin-lei, WANG Hong-mei, ZHANG Wei. Bifurcation analysis and control of HR neuron model under electromagnetic induction [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(9): 1-9. |
[11] | ZHANG Dao-xiang, SUN Guang-xun, MA Yuan, CHEN Jin-qiong, ZHOU Wen. Hopf bifurcation and spatial patterns in a delayed diffusive predator-prey system with Holling-III functional response and linear harvesting effect [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 85-94. |
[12] | BAI Bao-li, ZHANG Jian-gang, DU Wen-ju, YAN Hong-ming. Dynamic behavior analysis of a stochastic SIR epidemic model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 72-82. |
[13] | RAO Xu-li, HUANG Chuan, LIN Hui. Novel USRP-based fast channel handoff scheme in wireless LAN [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 49-53. |
[14] | FAN Jin-jun, LU Xiao-dong. Existence of nonoscillatory solutions to second order forced neutral dynamic equations with time delay on time scales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(05): 45-50. |
[15] | YANG Jun-xian, XU li*. Global stability of a SIQS epidemic model with #br# nonlinear incidence rate and time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 67-74. |
|