JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (8): 95-105.doi: 10.6040/j.issn.1671-9352.0.2023.427

Previous Articles    

Estimate of the bilinear θ-type C-Z operator on two weight Herz spaces with variable exponents

WU Qi, YANG Yanqi*, TAO Shuangping   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2025-07-25

Abstract: The boundedness of the bilinear θ-type Calderón-Zygmund operator on the double-weight variable exponent Herz space is obtained by using the double-weight estimation and the function decomposition method, as well as the weighted boundedness on the product Lp(·) space.

Key words: θ-type Calderón-Zygmund operator, weight function, Herz spaces with variable exponents, boundedness

CLC Number: 

  • O174.2
[1] YABUTA K. Generalizations of Calderón-Zygmund operators[J]. Studia Mathematica, 1985, 82(1):17-31.
[2] COIFMAN R R, MEYER Y. Au-delà des opérateurs pseudo-différentiels[M]. Paris: Société mathématique de France, 1978:76-116.
[3] LIU Z G, LU S Z. Endpoint estimates for commutators of Calderón-Zygmund type operators[J]. Kodai Mathematical Journal, 2002, 25(1):79-88.
[4] ZHANG P, XU H. Sharp weighted estimates for commutators of Calderón-Zygmund type operators[J]. Acta Mathematica Sinica, 2005, 48(4):625-636.
[5] DIENING L, RUICKA M. Calderón-Zygmund operators on generalized Lebesgue spaces Lp(·) and problems related to fluid dynamics[J]. Journal FürDie Reine und Angewandte Mathematik, 2003(563):197-220.
[6] LIU W Q, LU S Z. Calderón-Zygmundoperaors on the Hardy spaces of weighted Herz type[J]. Approximation Theory and Its Applications, 1997, 13(2):1-10.
[7] SHEN C H, XU J S. A vector-valued estimate of multilinear Calderón-Zygmund operators in Herz-Morrey spaces with variable exponents[J]. Hokkaido Mathematical Journal, 2017, 46(3):351-380.
[8] ZHENG T T, TAO X X, WU X M. Bilinear Calderón-Zygmund operators of type ω(t) on non-homogeneous space[J]. Journal of Inequalities and Applications, 2014(1):1-18.
[9] YANG Y Q, TAO S P. θ-type Calderón-Zygmund operators and commutators in variable exponents Herz space[J]. Open Mathematics, 2018, 16(1):1607-1620.
[10] YANG Y Q, TAO S P. θ-type Calderón-Zygmund operators on Morrey and Morrey-Herz-type Hardy spaces with variable exponents[J]. Politehn Univ Bucharest Sci Bull Ser A Appl Math Phys, 2020, 82(1):35-44.
[11] GULIYEV V S. Calderón-Zygmund operators with kernels of Dinis type on generalized weighted variable exponent Morrey spaces[J]. Positivity, 2021, 25(5):1771-1788.
[12] ACERBI E, MINGIONE G. Regularity results for stationary electro-rheological fluids[J]. Archive for Rational Mechanics and Analysis, 2002, 164(3):213-259.
[13] MINGIONE G, ACERBI E. Gradient estimates for a class of parabolic systems[J]. Duke Mathematical Journal, 2007, 136(1):285-320.
[14] CRUZ-URIBE D, FIORENZA A, MARTELL J M, et al. The boundedness of classical operators on variable L-p spaces[J]. Annales Academiae Scientiarum Fennicae Mathematica, 2006, 31(1):239-264.
[15] IZUKI M. Herz and amalgam spaces with variable exponent, the Haar wavelets and greediness of the wavelet system[J]. East journal on approximations, 2009, 15(1):87-110.
[16] IZUKI M. Vector-valued inequalities on Herz spaces and characterizations of Herz-Sobolev spaces with variable exponent[J]. Glasnik Matematicki, 2010, 45(2):475-503.
[17] IZUKI M. Boundedness of commutators on Herz spaces with variable exponent[J]. Rendiconti del Circolo Matematico di Palermo, 2010, 59(2):199-213.
[18] IZUKI M, NOI T. Boundedness of fractional integrals on weighted Herz spaces with variable exponent[J]. Journal of Inequalities and Applications, 2016, 2016(1):1-11.
[19] IZUKI M, NOI T. Two weighted herz spaces with variable exponents[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43(1):169-200.
[20] PÉREZ C. On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted L-p spaces with different weights[J]. Proceedings of the London Mathematical Society, 1995, 71(1):135-157.
[21] ZUZAO J D. Fourier analysis[M]. Providence: American Mathematical Soc, 2001:133-156.
[22] LU G Z, ZHANG P. Multilinear Calderón-Zygmund operators with kernels of Dinis type and applications[J]. Nonlinear Analysis, 2014, 107:92-117.
[23] IZUKI M, NOI T. An intrinsic square function on weighted Herz spaces with variable exponent[J]. Journal of Mathematical Inequalities, 2017, 11(3):799-816.
[1] LI Xuemei, ZHANG Zheng, LU Guanghui. Parametrized Littlewood-Paley operators and their higher order commutators on generalized Morrey spaces associated with ball quasi-Banach function spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2025, 60(8): 86-94.
[2] Xiufeng YANG,Jianghua FAN. Nonemptiness and boundedness of weakly efficient solution sets for vector mixed variational inequalities [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(7): 121-126.
[3] LI Chun-ping, SANG Yan-bin. Multiple solutions of fractional p-q-Laplacian system with sign-changing weight functions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(8): 95-102.
[4] WANG Jin-ping, ZHAO Kai. Lipschitz commutators of fractional integrals on Herz-type spaces with variable exponents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(10): 6-10.
[5] HUANG Ling-ling, ZHAO Kai. Boundedness of the parameterized Marcinkiewicz integral operators with variable kernels on weighted Campanato spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(10): 1-5.
[6] ZHOU Shu-juan, LIU Su-ying. Boundedness of linear operators on the anisotropic #br# weighted Herz-type Hardy spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 74-78.
[7] ZHAO Kai, JI Chun-jing, HUANG Zhi. Boundedness of the commutator of some Marcinkiewicz integral on Herz-type Hardy spaces [J]. J4, 2013, 48(6): 1-4.
[8] CHEN Cui. n-differentiation composition operators between weighted Banach  spaces of holomorphic functions [J]. J4, 2013, 48(4): 57-59.
[9] JIANG Xiao-yu. Composition followed by differentiation from Bloch-type into Zygmund-type space [J]. J4, 2013, 48(4): 51-56.
[10] GENG Su-li, ZHAO Kai*, ZHANG Li-ping. Boundedness of Littlewood-Paley operators with non-doubling measures [J]. J4, 2013, 48(10): 78-81.
[11] ZHAO Kai, SUN Xiao-hua, DU Hong-bin. Weak boundedness of Littlewood-Paley operators on  weighted Herz spaces [J]. J4, 2012, 47(4): 62-65.
[12] ZHANG Hong-xia1, KONG Xiang-zhi2. Some new integral inequalities in two independent  variables and their applications [J]. J4, 2011, 46(8): 52-58.
[13] YANG Ping, CAO Huai-xin*, SI Hai-yan. Fuzzy closed and fuzzy open sets in a generalized fuzzy normed space [J]. J4, 2011, 46(4): 113-117.
[14] YANG Bi-cheng. On a Hilbert-type integral inequality with a non-homogeneous kernel and its extension [J]. J4, 2011, 46(2): 123-126.
[15] HUANG Zhen-Xiao. The  best generalization of reverse Hilbert-type integral inequality [J]. J4, 2010, 45(2): 107-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!