JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (9): 133-136.doi: 10.6040/j.issn.1671-9352.0.2024.166

Previous Articles    

Lower bound for the blow-up time of solutions to a class of fourth-order reaction-diffusion equations

SHEN Xuhui   

  1. School of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan 030006, Shanxi, China
  • Published:2025-09-10

Abstract: The blow-up phenomenon of solutions to a class of fourth-order reaction-diffusion equations are considered. By deriving a Sobolev inequality suitable for high-dimensional spaces, constructing appropriate auxiliary functions, and employing differential inequality techniques, a lower bound for the blow-up time of solutions is provided.

Key words: fourth-order reaction-diffusion equation, blow-up, lower bound for the blow-up time

CLC Number: 

  • O175
[1] LEVINE H A. Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics: the method of unbounded fourier coefficients[J]. Mathematische Annalen, 1975, 214(3):205-220.
[2] PAYNE L E, SCHAEFER P W. Lower bounds for blow-up time in parabolic problems under Neumann conditions[J]. Applicable Analysis, 2006, 85(10):1301-1311.
[3] 欧阳柏平,肖胜中. 非线性边界条件下非局部多孔介质抛物方程解的爆破现象[J]. 应用数学学报,2023,46(3):478-492. OUYANG Baiping, XIAO Shengzhong. blow-up phenomena of solutions to a nonlocal porous medium parabolic equation with space-dependent coefficients and inner absorption terms under nonlinear boundary conditions[J]. Acta Mathematicae Applicatae Sinica, 2023, 46(3):478-492.
[4] HAN Jiangbo, XU Runzhang, YANG Chao. Continuous dependence on initial data and high energy blowup time estimate for porous elastic system[J]. Communications in Analysis and Mechanics, 2023, 15(2):214-244.
[5] WINKLER M. Global solutions in higher dimensions to a fourth-order parabolic equation modeling epitaxial thin-film growth[J]. Zeitschrift für Angewandte Mathematik und Physik, 2011, 62(4):575-608.
[6] HAN Yuzhu. blow-up phenomena for a fourth-order parabolic equation with a general nonlinearity[J]. Journal of Dynamical and Control Systems, 2021, 27:261-270.
[7] ZHAO Lijing, LI Fushan. Sufficient conditions and bounds estimate of blow-up time for a fourth order parabolic equation[J]. Qualitative Theory of Dynamical Systems, 2022, 21(3):1-17.
[8] PHILIPPIN G A. Lower bounds for blow-up time in a class of nonlinear wave equations[J]. Zeitschrift für Angewandte Mathematik und Physik, 2015, 66(1):129-134.
[9] HENROT A. Extremum problems for eigenvalues of elliptic operators[M]. Basel: Birkhäuser Verlag, 2006.
[1] OUYANG Bai-ping. Blow-up of solutions to a weakly coupled semilinear Moore-Gibson-Thompson system with a nonlinear term of derivative type [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(9): 101-110.
[2] DUAN Dui-hua, GAO Cheng-hua, WANG Jing-jing. Existence and nonexistence of blow-up solutions for a general k-Hessian equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(3): 62-67.
[3] DONG Li. Lower bounds for blow up time of two nonlinear wave equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 56-60.
[4] LIU Yang, DA Chao-jiu, LI Fu-ming. Nehari manifold and application to blow-up for a class of semilinear parabolic equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(1): 123-127.
[5] LÜ Hong-jie, LIU Jing-jing, QI Jing, LIU Shuo. Blow-up of a weakly dissipative μ-Hunter-Saxton equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(05): 55-59.
[6] LIN Chun-jin1, XU Guo-jing2. Finite time blowup of multi-dimensional Kaniadakis-Quarati equation#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 79-84.
[7] SONG Dan-dan, YUAN Bao-quan*. Explicit blow-up solutions for  compressible magneto-hydrodynamic equations [J]. J4, 2012, 47(2): 26-30.
[8] YAN Xiao-li, YUAN Bao-quan*. Analytical blow-up solutions to the Euler equations [J]. J4, 2011, 46(12): 104-107.
[9] LI Feng-ping. On the blow-up criteria to  smooth solutions of the  generalized magneto-hydrodynamic equations in R3 [J]. J4, 2010, 45(4): 90-94.
[10] LU Qiu-ci1, ZENG You-dong2. The semi-infinite problems of the solutions for a system of nonlocal wave equations [J]. J4, 2010, 45(10): 104-108.
[11] ZHANG Yi-bin . The existence for the solution of the Laplace equation with an exponential Neumann boundary condition [J]. J4, 2008, 43(3): 48-53 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!