JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (9): 101-110.doi: 10.6040/j.issn.1671-9352.0.2021.509

Previous Articles    

Blow-up of solutions to a weakly coupled semilinear Moore-Gibson-Thompson system with a nonlinear term of derivative type

OUYANG Bai-ping   

  1. College of Data Science, Guangzhou Huashang College, Guangzhou 511300, Guangdong, China
  • Published:2022-09-15

Abstract: Blow-up of solutions to the Cauchy problem for a weakly coupled semilinear Moore-Gibson-Thompson(MGT)system with a nonlinear term of derivative type is investigated. By formulating auxiliary functional and using methods of iteration technique and functional analysis, the nonexistence of global solutions and an upper bound estimate of solutions for the lifespan to the Cauchy problem in the subcritical case is derived.

Key words: nonlinear term of derivative type, Moore-Gibson-Thompson system, blow-up, lifespan

CLC Number: 

  • O175.4
[1] CRIGHTON D G. Model equations of nonlinear acoustics[J]. Annual Review of Fluid Mechanics, 1979, 11(1):11-33.
[2] JORDAN P M. Nonlinear acoustic phenomena in viscous thermally relaxingfluids:shock bifurcation and the emergence of diffusive solitons[J]. The Journal of the Acoustical Society of America, 2008, 124(4):2491.
[3] KALTENBACHER B, LASIECKA I, MARCHAND R. Well-posedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound[J]. Control and Cybernetics, 2011, 40(4):971-988.
[4] ALVES M O, CAIXETA A H, SILVA M A J, et al. Moore-Gibson-Thompson equation with memory in a history framework: a semigroup approach[J]. Zeitschrift Für Angewandte Mathematik Und Physik, 2018, 69(4):106.
[5] CAIXETA A H, LASIECKA I, DOMINGOS CAVALCANTI V N. On long time behavior of Moore-Gibson-Thompson equation with molecular relaxation[J]. Evolution Equations & Control Theory, 2016, 5(4):661-676.
[6] LASIECKA I, WANG X. Moore-Gibson-Thompson equation with memory, Part I: exponential decay of energy[J]. Zeitschrift Für Angewandte Mathematik Und Physik, 2016, 67(2):17.
[7] PELLICER M, SAID-HOUARI B. Well posedness and decay rates for the Cauchy problem of theMoore-Gibson-Thompson equation arising in high intensity ultrasound[J]. Applied Mathematics & Optimization, 2019, 80(2):447-478.
[8] PELLICER M, SOLÀ-MORALES J. Optimal scalar products in the Moore-Gibson-Thompson equation[J]. Evolution Equations & Control Theory, 2019, 8(1):203-220.
[9] DENG K. Blow-up of solutions of some nonlinear hyperbolic systems[J]. Rocky Mountain Journal of Mathematics, 1999, 29(3):807-820.
[10] KUBO H, KUBOTA K, SUNAGAWA H. Large time behavior of solutions to semilinear systems of wave equations[J]. Mathematische Annalen, 2006, 335(2):435-478.
[11] XU W. Blowup for systems of semilinear wave equations with small initial data[J]. Journal of Partial Differential Equations, 2004, 17(3):198-206.
[12] CHEN W, PALMIERI A. A blow-up result for the semilinear Moore-Gibson-Thompson equation with nonlinearity of derivative type in the conservative case[J]. Evolution Equations & Control Theory, 2020. DOI:10.3934/eect.2020085.
[13] AGEMI R, KUROKAWA Y H, TAKAMURA H. Critical curve for p-q systems of nonlinear wave equations in three space dimensions[J]. Journal of Differential Equations, 2000, 167(1):87-133.
[14] DEL SANTO D, MITIDIERI E. Blow-up of solutions of a hyperbolic system: the critical case[J]. Differential Equations, 1998, 34(9):1157-1163.
[15] KUROKAWA Y. The lifespan of radially symmetric solutions to nonlinear systems of odd dimensional wave equations[J]. Tsukuba Journal of Mathematics, 2005, 60(7):1239-1275.
[16] KUROKAWA Y, TAKAMURA H. A weighted pointwise estimate for two dimensional wave equations and its application to nonlinear systems[J]. Tsukuba Journal of Mathematics, 2003, 27(2):417-448.
[17] KUROKAWA Y, TAKAMURA H, WAKASA K. The blow-up and lifespan of solutions to systems of semilinear wave equation with critical exponents in high dimensions[J]. Differential Integral Equations, 2012, 25(3/4):363-382.
[18] CHEN W H, PALMIERI A. Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case[J]. Discrete & Continuous Dynamical Systems, 2020, 40(9):5513-5540.
[19] CHEN W H. Interplay effects on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms[J]. Nonlinear Analysis, 2021, 202:112160.
[20] CHEN W H, REISSIG M. Blow-up of solutions to Nakaos problem via an iteration argument[J]. Journal of Differential Equations, 2021, 275:733-756.
[21] CHEN W H, PALMIERI A. Weakly coupled system of semilinear wave equations with distinct scale-invariant terms in the linear part[J]. Zeitschrift Für Angewandte Mathematik Und Physik, 2019, 70(2):67.
[22] LAI N A, TAKAMURA H, WAKASA K. Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent[J]. Journal of Differential Equations, 2017, 263(9):5377-5394.
[23] PALMIERI A, TAKAMURAH. Blow-up for a weakly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities[J]. Nonlinear Analysis, 2019, 187:467-492.
[24] YORDANOV B T, ZHANG Q S. Finite time blow up for critical wave equations in high dimensions[J]. Journal of Functional Analysis, 2006, 231(2):361-374.
[25] LAI N A, TAKAMURA H. Nonexistence of global solutions of nonlinear wave equations with weak time-dependent damping related to Glasseys conjecture[J]. Differential and Integral Equations, 2019, 32(1/2):37-48.
[1] DUAN Dui-hua, GAO Cheng-hua, WANG Jing-jing. Existence and nonexistence of blow-up solutions for a general k-Hessian equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(3): 62-67.
[2] MENG Xi-wang, WANG Juan. Blow up of solutions to wave equations in the de Sitter spacetime [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(6): 64-75.
[3] DONG Li. Lower bounds for blow up time of two nonlinear wave equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 56-60.
[4] LIU Yang, DA Chao-jiu, LI Fu-ming. Nehari manifold and application to blow-up for a class of semilinear parabolic equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(1): 123-127.
[5] LÜ Hong-jie, LIU Jing-jing, QI Jing, LIU Shuo. Blow-up of a weakly dissipative μ-Hunter-Saxton equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(05): 55-59.
[6] LIN Chun-jin1, XU Guo-jing2. Finite time blowup of multi-dimensional Kaniadakis-Quarati equation#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 79-84.
[7] SONG Dan-dan, YUAN Bao-quan*. Explicit blow-up solutions for  compressible magneto-hydrodynamic equations [J]. J4, 2012, 47(2): 26-30.
[8] YAN Xiao-li, YUAN Bao-quan*. Analytical blow-up solutions to the Euler equations [J]. J4, 2011, 46(12): 104-107.
[9] LI Feng-ping. On the blow-up criteria to  smooth solutions of the  generalized magneto-hydrodynamic equations in R3 [J]. J4, 2010, 45(4): 90-94.
[10] LU Qiu-ci1, ZENG You-dong2. The semi-infinite problems of the solutions for a system of nonlocal wave equations [J]. J4, 2010, 45(10): 104-108.
[11] ZHANG Yi-bin . The existence for the solution of the Laplace equation with an exponential Neumann boundary condition [J]. J4, 2008, 43(3): 48-53 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .
[2] HE Hai-lun, CHEN Xiu-lan* . Circular dichroism detection of the effects of denaturants and buffers on the conformation of cold-adapted protease MCP-01 and  mesophilic protease BP01[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 23 -29 .
[3] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .
[4] SUN Xiao-ting1, JIN Lan2*. Application of DOSY in oligosaccharide mixture analysis[J]. J4, 2013, 48(1): 43 -45 .
[5] LUO Si-te, LU Li-qian, CUI Ruo-fei, ZHOU Wei-wei, LI Zeng-yong*. Monte-Carlo simulation of photons transmission at alcohol wavelength in  skin tissue and design of fiber optic probe[J]. J4, 2013, 48(1): 46 -50 .
[6] YANG Lun, XU Zheng-gang, WANG Hui*, CHEN Qi-mei, CHEN Wei, HU Yan-xia, SHI Yuan, ZHU Hong-lei, ZENG Yong-qing*. Silence of PID1 gene expression using RNA interference in C2C12 cell line[J]. J4, 2013, 48(1): 36 -42 .
[7] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .
[8] YANG Ying, JIANG Long*, SUO Xin-li. Choquet integral representation of premium functional and related properties on capacity space[J]. J4, 2013, 48(1): 78 -82 .
[9] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[10] DONG Wei-wei. A new method of DEA efficiency ranking for decision making units with independent subsystems[J]. J4, 2013, 48(1): 89 -92 .