JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (9): 101-110.doi: 10.6040/j.issn.1671-9352.0.2021.509
OUYANG Bai-ping
CLC Number:
[1] CRIGHTON D G. Model equations of nonlinear acoustics[J]. Annual Review of Fluid Mechanics, 1979, 11(1):11-33. [2] JORDAN P M. Nonlinear acoustic phenomena in viscous thermally relaxingfluids:shock bifurcation and the emergence of diffusive solitons[J]. The Journal of the Acoustical Society of America, 2008, 124(4):2491. [3] KALTENBACHER B, LASIECKA I, MARCHAND R. Well-posedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound[J]. Control and Cybernetics, 2011, 40(4):971-988. [4] ALVES M O, CAIXETA A H, SILVA M A J, et al. Moore-Gibson-Thompson equation with memory in a history framework: a semigroup approach[J]. Zeitschrift Für Angewandte Mathematik Und Physik, 2018, 69(4):106. [5] CAIXETA A H, LASIECKA I, DOMINGOS CAVALCANTI V N. On long time behavior of Moore-Gibson-Thompson equation with molecular relaxation[J]. Evolution Equations & Control Theory, 2016, 5(4):661-676. [6] LASIECKA I, WANG X. Moore-Gibson-Thompson equation with memory, Part I: exponential decay of energy[J]. Zeitschrift Für Angewandte Mathematik Und Physik, 2016, 67(2):17. [7] PELLICER M, SAID-HOUARI B. Well posedness and decay rates for the Cauchy problem of theMoore-Gibson-Thompson equation arising in high intensity ultrasound[J]. Applied Mathematics & Optimization, 2019, 80(2):447-478. [8] PELLICER M, SOLÀ-MORALES J. Optimal scalar products in the Moore-Gibson-Thompson equation[J]. Evolution Equations & Control Theory, 2019, 8(1):203-220. [9] DENG K. Blow-up of solutions of some nonlinear hyperbolic systems[J]. Rocky Mountain Journal of Mathematics, 1999, 29(3):807-820. [10] KUBO H, KUBOTA K, SUNAGAWA H. Large time behavior of solutions to semilinear systems of wave equations[J]. Mathematische Annalen, 2006, 335(2):435-478. [11] XU W. Blowup for systems of semilinear wave equations with small initial data[J]. Journal of Partial Differential Equations, 2004, 17(3):198-206. [12] CHEN W, PALMIERI A. A blow-up result for the semilinear Moore-Gibson-Thompson equation with nonlinearity of derivative type in the conservative case[J]. Evolution Equations & Control Theory, 2020. DOI:10.3934/eect.2020085. [13] AGEMI R, KUROKAWA Y H, TAKAMURA H. Critical curve for p-q systems of nonlinear wave equations in three space dimensions[J]. Journal of Differential Equations, 2000, 167(1):87-133. [14] DEL SANTO D, MITIDIERI E. Blow-up of solutions of a hyperbolic system: the critical case[J]. Differential Equations, 1998, 34(9):1157-1163. [15] KUROKAWA Y. The lifespan of radially symmetric solutions to nonlinear systems of odd dimensional wave equations[J]. Tsukuba Journal of Mathematics, 2005, 60(7):1239-1275. [16] KUROKAWA Y, TAKAMURA H. A weighted pointwise estimate for two dimensional wave equations and its application to nonlinear systems[J]. Tsukuba Journal of Mathematics, 2003, 27(2):417-448. [17] KUROKAWA Y, TAKAMURA H, WAKASA K. The blow-up and lifespan of solutions to systems of semilinear wave equation with critical exponents in high dimensions[J]. Differential Integral Equations, 2012, 25(3/4):363-382. [18] CHEN W H, PALMIERI A. Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case[J]. Discrete & Continuous Dynamical Systems, 2020, 40(9):5513-5540. [19] CHEN W H. Interplay effects on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms[J]. Nonlinear Analysis, 2021, 202:112160. [20] CHEN W H, REISSIG M. Blow-up of solutions to Nakaos problem via an iteration argument[J]. Journal of Differential Equations, 2021, 275:733-756. [21] CHEN W H, PALMIERI A. Weakly coupled system of semilinear wave equations with distinct scale-invariant terms in the linear part[J]. Zeitschrift Für Angewandte Mathematik Und Physik, 2019, 70(2):67. [22] LAI N A, TAKAMURA H, WAKASA K. Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent[J]. Journal of Differential Equations, 2017, 263(9):5377-5394. [23] PALMIERI A, TAKAMURAH. Blow-up for a weakly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities[J]. Nonlinear Analysis, 2019, 187:467-492. [24] YORDANOV B T, ZHANG Q S. Finite time blow up for critical wave equations in high dimensions[J]. Journal of Functional Analysis, 2006, 231(2):361-374. [25] LAI N A, TAKAMURA H. Nonexistence of global solutions of nonlinear wave equations with weak time-dependent damping related to Glasseys conjecture[J]. Differential and Integral Equations, 2019, 32(1/2):37-48. |
[1] | DUAN Dui-hua, GAO Cheng-hua, WANG Jing-jing. Existence and nonexistence of blow-up solutions for a general k-Hessian equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(3): 62-67. |
[2] | MENG Xi-wang, WANG Juan. Blow up of solutions to wave equations in the de Sitter spacetime [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(6): 64-75. |
[3] | DONG Li. Lower bounds for blow up time of two nonlinear wave equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 56-60. |
[4] | LIU Yang, DA Chao-jiu, LI Fu-ming. Nehari manifold and application to blow-up for a class of semilinear parabolic equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(1): 123-127. |
[5] | LÜ Hong-jie, LIU Jing-jing, QI Jing, LIU Shuo. Blow-up of a weakly dissipative μ-Hunter-Saxton equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(05): 55-59. |
[6] | LIN Chun-jin1, XU Guo-jing2. Finite time blowup of multi-dimensional Kaniadakis-Quarati equation#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 79-84. |
[7] | SONG Dan-dan, YUAN Bao-quan*. Explicit blow-up solutions for compressible magneto-hydrodynamic equations [J]. J4, 2012, 47(2): 26-30. |
[8] | YAN Xiao-li, YUAN Bao-quan*. Analytical blow-up solutions to the Euler equations [J]. J4, 2011, 46(12): 104-107. |
[9] | LI Feng-ping. On the blow-up criteria to smooth solutions of the generalized magneto-hydrodynamic equations in R3 [J]. J4, 2010, 45(4): 90-94. |
[10] | LU Qiu-ci1, ZENG You-dong2. The semi-infinite problems of the solutions for a system of nonlocal wave equations [J]. J4, 2010, 45(10): 104-108. |
[11] | ZHANG Yi-bin . The existence for the solution of the Laplace equation with an exponential Neumann boundary condition [J]. J4, 2008, 43(3): 48-53 . |