JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (10): 23-41.doi: 10.6040/j.issn.1671-9352.0.2025.116
CHEN Yunfan1, WANG Yechen1, WANG Long2*, AN Qi1*, FENG Zeguo2
CLC Number:
[1] CHEN Y F, AN Q, TENG K X, et al. Application of SERS in in-vitro biomedical detection[J]. Chemistry-An Asian Journal, 2023, 18(4):e202201194. [2] YI J, YOU E M, HU R, et al. Surface-enhanced Raman spectroscopy: a half-century historical perspective[J]. Chemical Society Reviews, 2025, 54(3):1453-1551. [3] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2):163-166. [4] JEANMAIRE D L, VAN DUYNE R P. Surface Raman spectroelectrochemistry part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 84(1):1-20. [5] ALBRECHT M G, CREIGHTON J A. Anomalously intense Raman spectra of pyridine at a silver electrode[J]. Journal of the American Chemical Society, 1977, 99(15):5215-5217. [6] LEE P C, MEISEL D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols[J]. The Journal of Physical Chemistry, 1982, 86(17):3391-3395. [7] KNEIPP K, WANG Y, KNEIPP H, et al. Single molecule detection using surface-enhanced Raman scattering(SERS)[J]. Physical Review Letters, 1997, 78(9):1667-1670. [8] NIE S, EMORY S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 1997, 275(5303):1102-1106. [9] BENZ F, CHIKKARADDY R, SALMON A, et al. SERS of individual nanoparticles on a mirror: size does matter, but so does shape[J]. The Journal of Physical Chemistry Letters, 2016, 7(12):2264-2269. [10] TIAN Y, FANG G, WU F X, et al. Raman spectroscopic technologies for chiral discrimination: current status and new frontiers[J]. Coordination Chemistry Reviews, 2025, 526:216375. [11] LIN S, DONG M Y, LI C, et al. Machine learning-assisted ultrasensitive SERS immunoassays across wide concentration ranges toward clinical ovarian cancer diagnosis[J]. Advanced Functional Materials, 2025, e09813. [12] HAN X X, JI W, ZHAO B, et al. Semiconductor-enhanced Raman scattering: active nanomaterials and applications[J]. Nanoscale, 2017, 9(15):4847-4861. [13] HAN X X, KÖHLER C, KOZUCH J, et al. Potential-dependent surface-enhanced resonance Raman spectroscopy at nanostructured TiO2: a case study on cytochrome b5[J]. Small, 2013, 9(24):4175-4181. [14] LAI H S, XU F G, ZHANG Y, et al. Recent progress on graphene-based substrates for surface-enhanced Raman scattering applications[J]. Journal of Materials Chemistry B, 2018, 6(24):4008-4028. [15] LEE Y, KIM H, LEE J, et al. Enhanced Raman scattering of rhodamine 6G films on two-dimensional transition metal dichalcogenides correlated to photoinduced charge transfer[J]. Chemistry of Materials, 2016, 28(1):180-187. [16] YILMAZ M, BABUR E, OZDEMIR M, et al. Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy[J]. Nature Materials, 2017, 16(9):918-924. [17] WANG X T, SHI W X, WANG S X, et al. Two-dimensional amorphous TiO2 nanosheets enabling high-efficiency photoinduced charge transfer for excellent SERS activity[J]. Journal of the American Chemical Society, 2019, 141(14):5856-5862. [18] DING S Y, YOU E M, TIAN Z Q, et al. Electromagnetic theories of surface-enhanced Raman spectroscopy[J]. Chemical Society Reviews, 2017, 46(13):4042-4076. [19] PARK W H, KIM Z H. Charge transfer enhancement in the SERS of a single molecule[J]. Nano Letters, 2010, 10(10):4040-4048. [20] VALLEY N, GREENELTCH N, VAN DUYNE R P, et al. A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of surface-enhanced Raman spectroscopy(SERS): theory and experiment[J]. The Journal of Physical Chemistry Letters, 2013, 4(16):2599-2604. [21] KNEIPP J, SEIFERT S, GÄRBER F. SERS microscopy as a tool for comprehensive biochemical characterization in complex samples[J]. Chemical Society Reviews, 2024, 53(15):7641-7656. [22] CUTSHAW G, UTHAMAN S, HASSAN N, et al. The emerging role of Raman spectroscopy as an omics approach for metabolic profiling and biomarker detection toward precision medicine[J]. Chemical Reviews, 2023, 123(13):8297-8346. [23] ZHOU H, XU L G, REN Z H, et al. Machine learning-augmented surface-enhanced spectroscopy toward next-generation molecular diagnostics[J]. Nanoscale Advances, 2023, 5(3):538-570. [24] CAO D W, LIN H C, LIU Z Y, et al. Serum-based surface-enhanced Raman spectroscopy combined with PCA-RCKNCN for rapid and accurate identification of lung cancer[J]. Analytica Chimica Acta, 2022, 1236:340574. [25] LOO J, CAI C X, CHOONG J, et al. Deep learning-based classification and segmentation of retinal cavitations on optical coherence tomography images of macular telangiectasia type 2[J]. British Journal of Ophthalmology, 2022, 106(3):396-402. [26] CHEN P C, LIU Y, PENG L. How to develop machine learning models for healthcare[J]. Nature Materials, 2019, 18(5):410-414. [27] LI H M, WANG Q, TANG J, et al. Establishment of a reliable scheme for obtaining highly stable SERS signal of biological serum[J]. Biosensors and Bioelectronics, 2021, 189:113315. [28] WANG Y P, YU C W, JI H Y, et al. Label-free therapeutic drug monitoring in human serum by the 3-step surface enhanced Raman spectroscopy and multivariate analysis[J]. Chemical Engineering Journal, 2023, 452:139588. [29] LU Y, WANG J Y, BI X Y, et al. Non-invasive and rapid diagnosis of low-grade bladder cancer via SERSomes of urine[J]. Nanoscale, 2025, 17(12):7303-7312. [30] DONG Y L, HU J Y, JIN J L, et al. Advances in machine learning-assisted SERS sensing towards food safety and biomedical analysis[J]. TrAC Trends in Analytical Chemistry, 2024, 180:117974. [31] DIJKSTRA R J, SCHEENEN W J J M, DAM N, et al. Monitoring neurotransmitter release using surface-enhanced Raman spectroscopy[J]. Journal of Neuroscience Methods, 2007, 159(1):43-50. [32] SHEN J H, LI M, LI Z F, et al. Single convolutional neural network model for multiple preprocessing of Raman spectra[J]. Vibrational Spectroscopy, 2022, 121:103391. [33] THRIFT W J, RAGAN R. Quantification of analyte concentration in the single molecule regime using convolutional neural networks[J]. Analytical Chemistry, 2019, 91(21):13337-13342. [34] RALBOVSKY N M, LEDNEV I K. Towards development of a novel universal medical diagnostic method: Raman spectroscopy and machine learning[J]. Chemical Society Reviews, 2020, 49(20):7428-7453. [35] YANG L, SHAMI A. On hyperparameter optimization of machine learning algorithms: theory and practice[J]. Neurocomputing, 2020, 415:295-316. [36] SHIN H, OH S, HONG S, et al. Early-stage lung cancer diagnosis by deep learning-based spectroscopic analysis of circulating exosomes[J]. ACS Nano, 2020, 14(5):5435-5444. [37] FENG J Z, WANG Y, PENG J, et al. Comparison between logistic regression and machine learning algorithms on survival prediction of traumatic brain injuries[J]. Journal of Critical Care, 2019, 54:110-116. [38] DING Y, SUN Y, LIU C, et al. SERS-based biosensors combined with machine learning for medical application[J]. ChemistryOpen, 2023, 12(1):e202200192 [39] YADAV A, NAIK R, GUPTA E, et al. Single-shot, receptor-free, rapid detection and classification of five respiratory viruses by machine learning integrated SERS sensing platform[J]. Biosensors and Bioelectronics, 2025, 279:117394. [40] HAN S, PARK J, MOON S, et al. Label-free and liquid state SERS detection of multi-scaled bioanalytes via light-induced pinpoint colloidal assembly[J]. Biosensors and Bioelectronics, 2024, 264:116663. [41] JANCI T, VALINGER D, GAJDOS KLJUSURIC J, et al. Determination of histamine in fish by surface enhanced Raman spectroscopy using silver colloid SERS substrates[J]. Food Chemistry, 2017, 224:48-54. [42] ZHU J J, JIANG X, RONG Y W, et al. Label-free detection of trace level zearalenone in corn oil by surface-enhanced Raman spectroscopy(SERS)coupled with deep learning models[J]. Food Chemistry, 2023, 414:135705. [43] LEONG S X, TAN E X, HAN X M, et al. Surface-enhanced Raman scattering-based surface chemotaxonomy: combining bacteria extracellular matrices and machine learning for rapid and universal species identification[J]. ACS Nano, 2023, 17(22):23132-23143. [44] ZHAO J L, CHEN J F, TANG J, et al. Artificial intelligence assisted label-free surface-enhanced Raman scattering detection of early-stage cancer-derived exosomes based on g-C3N4/Ag hybrid substrate prepared by electro-synthesis[J]. Chemical Engineering Journal, 2024, 498:155526. [45] MATSCHULAT A, DRESCHER D, KNEIPP J. Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems[J]. ACS Nano, 2010, 4(6):3259-3269. [46] LIN L L, ALVAREZ-PUEBLA R, LIZ-MARZÁN L M, et al. Surface-enhanced Raman spectroscopy for biomedical applications: recent advances and future challenges[J]. ACS Applied Materials & Interfaces, 2025, 17(11):16287-16379. [47] SHIN H, JEONG H, PARK J, et al. Correlation between cancerous exosomes and protein markers based on surface-enhanced Raman spectroscopy(SERS)and principal component analysis(PCA)[J]. ACS Sensors, 2018, 3(12):2637-2643. [48] DING Z X, WANG C, SONG X, et al. Strong π-metal interaction enables liquid interfacial nanoarray-molecule co-assembly for Raman sensing of ultratrace fentanyl doped in heroin, ketamine, morphine, and real urine[J]. ACS Applied Materials & Interfaces, 2023, 15(9):12570-12579. [49] LIM J Y, NAM J S, SHIN H, et al. Identification of newly emerging influenza viruses by detecting the virally infected cells based on surface enhanced Raman spectroscopy and principal component analysis[J]. Analytical Chemistry, 2019, 91(9):5677-5684. [50] MARTIN F L, KELLY J G, LLABJANI V, et al. Distinguishing cell types or populations based on the computational analysis of their infrared spectra[J]. Nature Protocols, 2010, 5(11):1748-1760. [51] LEONG S X, KOH L K, KOH C S L, et al. In situ differentiation of multiplex noncovalent interactions using SERS and chemometrics[J]. ACS Applied Materials & Interfaces, 2020, 12(29):33421-33427. [52] NGUYEN C Q, THRIFT W J, BHATTACHARJEE A, et al. Longitudinal monitoring of biofilm formation via robust surface-enhanced Raman scattering quantification of pseudomonas aeruginosa-produced metabolites[J]. ACS Applied Materials & Interfaces, 2018, 10(15):12364-12373. [53] MEUNIER C J, MCCARTY G S, SOMBERS L A. Drift subtraction for fast-scan cyclic voltammetry using double-waveform partial-least-squares regression[J]. Analytical Chemistry, 2019, 91(11):7319-7327. [54] ACOSTA C M, OGOSHI E, SOUZA J A, et al. Machine learning study of the magnetic ordering in 2D materials[J]. ACS Applied Materials & Interfaces, 2022, 14(7):9418-9432. [55] LEONG S X, KOH C S L, SIM H Y F, et al. Enantiospecific molecular fingerprinting using potential-modulated surface-enhanced Raman scattering to achieve label-free chiral differentiation[J]. ACS Nano, 2021, 15(1):1817-1825. [56] ALOBAIDI M, MALIK K M, SABRA S. Linked open data-based framework for automatic biomedical ontology generation[J]. BMC Bioinformatics, 2018, 19(1):319. [57] DIAO X K, QI G H, LI X L, et al. Label-free exosomal SERS detection assisted by machine learning for accurately discriminating cell cycle stages and revealing the molecular mechanisms during the mitotic process[J]. Analytical Chemistry, 2025, 97(9):5093-5101. [58] KIM W H, LEE S, JEON M J, et al. Rapid and differential diagnosis of sepsis stages using an advanced 3D plasmonic bimetallic alloy nanoarchitecture-based SERS biosensor combined with machine learning for multiple analyte identification[J]. Advanced Science, 2025, 2414688. [59] SHU W K, ZHANG M J, ZHANG C Q, et al. An alloy platform of dual-fingerprints for high-performance stroke screening[J]. Advanced Functional Materials, 2023, 33(5):2210267. [60] DAS S, SAXENA K, TINGUELY J C, et al. SERS nanowire chip and machine learning-enabled classification of wild-type and antibiotic-resistant bacteria at species and strain levels[J]. ACS Applied Materials & Interfaces, 2023, 15(20):24047-24058. [61] TAMTAJI M, GUO X Y, TYAGI A, et al. Machine learning-aided design of gold core-shell nanocatalysts toward enhanced and selective photooxygenation[J]. ACS Applied Materials & Interfaces, 2022, 14(41):46471-46480. [62] CHEN Y F, LI H T, SHI J, et al. Diagnosis of early opioids addiction by label-free serum SERS fingerprints with machine learning[J]. Chemical Engineering Journal, 2025, 505:159412. [63] JIANG H Y, UNIVERSITY C S, ZHANG Y B, et al. Comprehensive serum analysis via an AI-assisted magnetically driven SERS platform for the diagnosis and etiological differentiation of childhood epilepsy[J]. ACS Applied Materials & Interfaces, 2025, 17(8):11731-11741. [64] LEONG S X, LEONG Y X, TAN E X, et al. Noninvasive and point-of-care surface-enhanced Raman scattering(SERS)-based breathalyzer for mass screening of coronavirus disease 2019(COVID-19)under 5 min[J]. ACS Nano, 2022, 16(2):2629-2639. [65] JONES T, ZHOU D, LIU J, et al. Quantitative multiplexing of uric acid and creatinine using polydisperse plasmonic nanoparticles enabled by electrochemical-SERS and machine learning[J]. Journal of Materials Chemistry B, 2024, 12(41):10563-10572. [66] GARG A, HAWKS S, PAN J, et al. Machine learning-driven SERS fingerprinting of disintegrated viral components for rapid detection of SARS-CoV-2 in environmental dust[J]. Biosensors and Bioelectronics, 2024, 247:115946. [67] WAN Y, WEI Q, SUN H, et al. Machine learning assisted biomimetic flexible SERS sensor from seashells for pesticide classification and concentration prediction[J]. Chemical Engineering Journal, 2025, 507:160813. [68] KHONDAKAR K R, MAZUMDAR H, DAS S, et al. Machine learning(ML)-assisted surface-enhanced Raman spectroscopy(SERS)technologies for sustainable health[J]. Advances in Colloid and Interface Science, 2025, 344:103594. [69] TAN E X, CHEN J R T, PANG D W C, et al. Transfer learning-assisted SERS: predicting molecular identity and concentration in mixtures using pure compound spectra[J]. Angewandte Chemie International Edition, 2025, e202508717. [70] ZHENG P, WU L T, LEE M K H, et al. Deep learning-powered colloidal digital SERS for precise monitoring of cell culture media[J]. Nano Letters, 2025, 25(15):6284-6291. [71] SUN X R, XUAN L R, LIU C L, et al. Quantitative analysis of deltamethrin residues in water using surface-enhanced Raman spectroscopy[J]. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2025, 343:126545. [72] TANG J W, YUAN Q, ZHANG L, et al. Application of machine learning-assisted surface-enhanced Raman spectroscopy in medical laboratories: principles, opportunities, and challenges[J]. TrAC Trends in Analytical Chemistry, 2025, 184:118135. [73] MAHMOUD A Y F, TEIXEIRA A, ARANDA M, et al. Will data analytics revolution finally bring SERS to the clinic?[J]. TrAC Trends in Analytical Chemistry, 2023, 169:117311. [74] HERNÁNDEZ-VIDALES K, GUEVARA E, OLIVARES-ILLANA V, et al. Characterization of wild-type and mutant p53 protein by Raman spectroscopy and multivariate methods[J]. Journal of Raman Spectroscopy, 2019, 50(10):1388-1394. [75] WU X X, XIA Y Z, HUANG Y J, et al. Improved SERS-active nanoparticles with various shapes for CTC detection without enrichment process with supersensitivity and high specificity[J]. ACS Applied Materials & Interfaces, 2016, 8(31):19928-19938. [76] PANG Y F, WANG C W, XIAO R, et al. Dual-selective and dual-enhanced SERS nanoprobes strategy for circulating hepatocellular carcinoma cells detection[J]. Chemistry-A European Journal, 2018, 24(27):7060-7067. [77] FANG X L, ZENG Q Y, YAN X L, et al. Fast discrimination of tumor and blood cells by label-free surface-enhanced Raman scattering spectra and deep learning[J]. Journal of Applied Physics, 2021, 129(12):123103. [78] RIPPA M, CASTAGNA R, PANNICO M, et al. Octupolar metastructures for a highly sensitive, rapid, and reproducible phage-based detection of bacterial pathogens by surface-enhanced Raman scattering[J]. ACS Sensors, 2017, 2(7):947-954. [79] RODRÍGUEZ-LORENZO L, GARRIDO-MAESTU A, BHUNIA A K, et al. Gold nanostars for the detection of foodborne pathogens via surface-enhanced Raman scattering combined with microfluidics[J]. ACS Applied Nano Materials, 2019, 2(10):6081-6086. [80] LI H, CAO Y B, LU F. Differentiation of different antifungals with various mechanisms using dynamic surface-enhanced Raman spectroscopy combined with machine learning[J]. Journal of Innovative Optical Health Sciences, 2021, 14(4):2141002. [81] HU X, ZENG Q Z, XIAO J, et al. Herpes simplex virus 1 induces microglia gasdermin D-dependent pyroptosis through activating the NLR family pyrin domain containing 3 inflammasome[J]. Frontiers in Microbiology, 2022, 13:838808. [82] FREITAS C, ELEUTÉRIO J, SOARES G, et al. Towards rapid and low-cost stroke detection using SERS and machine learning[J]. Biosensors, 2025, 15(3):136. [83] KAO Y C, HAN X M, LEE Y H, et al. Multiplex surface-enhanced Raman scattering identification and quantification of urine metabolites in patient samples within 30 min[J]. ACS Nano, 2020, 14(2):2542-2552. [84] CHEN J R T, TAN E X, TANG J X, et al. Machine learning-based SERS chemical space for two-way prediction of structures and spectra of untrained molecules[J]. Journal of the American Chemical Society, 2025, 147(8):6654-6664. [85] JU Y, NEUMANN O, BAJOMO M, et al. Identifying surface-enhanced Raman spectra with a Raman library using machine learning[J]. ACS Nano, 2023, 17(21):21251-21261. [86] CHHEDA J, FANG Y T, DERIU C, et al. Discrimination of genetic biomarkers of disease through machine-learning-based hypothesis testing of direct SERS spectra of DNA and RNA[J]. ACS Sensors, 2024, 9(5):2488-2498. |
[1] | WANG Tinghua, HU Zhenwei, ZHAN Hongxiang. A novel unsupervised feature selection method [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(12): 130-140. |
[2] | Jin-yu FAN,Yang ZOU,Jian XIONG,Yongyi GU. Imagedata control chart based on nonnegative CP tensor decomposition [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(1): 27-34. |
[3] | Yiran LI,Ning ZHAO,Zhijian ZHANG. Prediction of average queue time in multi-server tandem queueing systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(1): 17-26. |
[4] | Xianjun WU,Shaoshi TANG,Mingqiu WANG. Personalized recommendation of mobile users by integrating basic information and communication behavior [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(9): 81-93. |
[5] | SU Zi-peng, YUAN Lei, LIU Peng, CHEN Xing-shu, LUO Yong-gang, CHEN Liang-guo. Research and implementation of real-time processing model of high-speed network stream [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(9): 25-32. |
[6] | ZHANG Jie, PENG Guo-jun, YANG Xiu-zhang. Malicious evasion sample detection based on dynamic API call sequence and machine learning [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(7): 85-93. |
[7] | LI Ying, ZHANG Guo-lin. Modeling for dissolved gases concentration based on mutual information and kernel entropy component analysis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(7): 43-52. |
[8] | Yun-miao GUI,Da-yu LIU,Hong-chun HU. Value-added service investment and pricing of logistics service platform under dynamic competition [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(3): 12-22. |
[9] | An-min ZHOU,Lei HU,Lu-ping LIU,Peng JIA,Liang LIU. Malicious Office document detection technology based on entropy time series [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(5): 1-7. |
[10] | Zhe-jin DONG,Jian WANG,Ling-fei QIAN,Hong-fei LIN. A modeling method of user growth profile [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(3): 38-45. |
[11] | XU Wei-cheng, LI Xin-peng. Generalized Cav(u)theorem for repeated games with incomplete information on one side [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 42-45. |
[12] | CHEN Xin, XUE Yun, LU Xin, LI Wan-li, ZHAO Hong-ya, HU Xiao-hui. Text feature extraction method for sentiment analysis based on order-preserving submatrix and frequent sequential pattern mining [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 36-45. |
[13] | SUN Jian-dong, GU Xiu-sen, LI Yan, XU Wei-ran. Chinese entity relation extraction algorithms based on COAE2016 datasets [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 7-12. |
[14] | SHI Han-xiao, LI Xiao-jun, HAO Teng-da, LIU Hong, ZHU Liu-qing. Emotion analysis on Microblog short text [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(7): 80-90. |
[15] | XU Ye, XU Wei-ran. Algorithm of knowledge base cumulative citation recommendation based on semantic features expansion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 26-32. |
|