您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (12): 66-70.doi: 10.6040/j.issn.1671-9352.0.2014.187

• 论文 • 上一篇    下一篇

G2型Shi-Catalan构形的自由性

高瑞梅   

  1. 长春理工大学理学院, 吉林 长春 130022
  • 收稿日期:2014-04-28 修回日期:2014-09-09 出版日期:2014-12-20 发布日期:2014-12-20
  • 作者简介:高瑞梅(1983- ),女,博士,讲师,研究方向为奇点理论和超平面构形. E-mail:gaorm135@nenu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11271063, 11326078); 黑龙江省教育厅科技研究项目(12531187)

The freeness of Shi-Catalan arrangements of type G2

GAO Rui-mei   

  1. Department of Science, Changchun University of Science and Technology, Changchun 130022, Jilin, China
  • Received:2014-04-28 Revised:2014-09-09 Online:2014-12-20 Published:2014-12-20

摘要: G2型Shi-Catalan构形是二维空间中的重构形, 它是将G2型Weyl构形在同一轨道中的超平面赋予相同的重数而得到的构形。 给出了G2型Shi-Catalan构形的4种具体形式, 通过将构形投影到射影平面计算构形中超平面交点个数的方法, 证明了G2型Shi-Catalan构形的锥构形都是自由的。

关键词: Shi-Catalan构形, 自由性, Weyl构形

Abstract: The Shi-Catalan arrangements of type G2 are multiarrangements in the 2-dimensional vector space, which are obtained by giving the same multiplicity to the hyperplanes in the same orbit in Weyl arrangements of type G2. Four concrete forms of Shi-Catalan arrangements of type G2 are given. By counting the intersections of hyperplanes in reflection planes, we prove the conclusion that the cones over the Shi-Catalan arrangements of type G2 are all free.

Key words: Weyl arrangement, freeness, Shi-Catalan arrangement

中图分类号: 

  • O189
[1] ORLIK P, TERAO H. Arrangements of hyperplanes[M]// Grundlehren der Mathematischen Wissenschaften, 300. Berlin: Springer-Verlag, 1992: 1-325.
[2] ORLIK P, SOLOMON L. Combinatorics and topology of complements of hyperplanes[J]. Inventiones Mathematicae, 1980, 56:167-189.
[3] JIANG Guangfeng, YU Jianming. Supersolvability of complementary signed-graphic hyperplane arrangements[J]. The Australasian Journal of Combinatorics, 2004, 30:261-274.
[4] ABE T, TERAO H, WAKEFIELD M. The characteristic polynomial of a multiarrangement[J]. Advances in Mathematics, 2007, 215: 825-838.
[5] YUZVINSKY S. Orlik-Solomon algebras in algebra and topology[J]. Russian Mathematical Surveys, 2001, 56: 293-364.
[6] GAO Ruimei, PEI Donghe. The Supersolvable order of hyperplanes of an arrangement[J]. Communications in Mathematical Research, 2013, 29(3):231-238.
[7] 高瑞梅, 裴东河. 构形的特征多项式和超可解性的算法[J]. 山东大学学报: 理学版, 2014, 49(2):51-57. GAO Ruimei, PEI Donghe. The algorithms of characteristic polynomial and supersolvability of a hyperplane arrangement[J]. Journal of Shandong University: Natural Science, 2014, 49(2):51-57.
[8] YOSHINAGA M. Characterization of a free arrangement and conjecture of Edelman and Reiner[J]. Inventiones Mathematicae, 2004, 157(2):449-454.
[9] SUYAMA D, TERAO H. The Shi arrangements and the Bernoulli polynomials[J]. The Bulletin of the London Mathematical Society, 2012, 44:563-570.
[10] GAO Ruimei, PEI Donghe, TERAO H. The Shi arrangement of the type Dl[KG-*4][J]. Proceedings of the Japan Academy, Series A: Mathematical Sciences, 2012, 88:41-45.
[11] SHI Jianyi. The Kazhdan-Lusztig cells in certain affine Weyl groups[M]// Lecture Notes in Mathematics, 1179. New York: Springer-Verlag, 1986.
[12] ABE T, TERAO H. The freeness of Shi-Catalan arrangements[J]. European Journal of Combinatorics, 2011, 32:1191-1198.
[1] 高瑞梅,初颖. Weyl构形An-1Bn之间的构形的自由性[J]. 山东大学学报(理学版), 2018, 53(6): 70-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!