山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (12): 66-70.doi: 10.6040/j.issn.1671-9352.0.2014.187
高瑞梅
GAO Rui-mei
摘要: G2型Shi-Catalan构形是二维空间中的重构形, 它是将G2型Weyl构形在同一轨道中的超平面赋予相同的重数而得到的构形。 给出了G2型Shi-Catalan构形的4种具体形式, 通过将构形投影到射影平面计算构形中超平面交点个数的方法, 证明了G2型Shi-Catalan构形的锥构形都是自由的。
中图分类号:
[1] ORLIK P, TERAO H. Arrangements of hyperplanes[M]// Grundlehren der Mathematischen Wissenschaften, 300. Berlin: Springer-Verlag, 1992: 1-325. [2] ORLIK P, SOLOMON L. Combinatorics and topology of complements of hyperplanes[J]. Inventiones Mathematicae, 1980, 56:167-189. [3] JIANG Guangfeng, YU Jianming. Supersolvability of complementary signed-graphic hyperplane arrangements[J]. The Australasian Journal of Combinatorics, 2004, 30:261-274. [4] ABE T, TERAO H, WAKEFIELD M. The characteristic polynomial of a multiarrangement[J]. Advances in Mathematics, 2007, 215: 825-838. [5] YUZVINSKY S. Orlik-Solomon algebras in algebra and topology[J]. Russian Mathematical Surveys, 2001, 56: 293-364. [6] GAO Ruimei, PEI Donghe. The Supersolvable order of hyperplanes of an arrangement[J]. Communications in Mathematical Research, 2013, 29(3):231-238. [7] 高瑞梅, 裴东河. 构形的特征多项式和超可解性的算法[J]. 山东大学学报: 理学版, 2014, 49(2):51-57. GAO Ruimei, PEI Donghe. The algorithms of characteristic polynomial and supersolvability of a hyperplane arrangement[J]. Journal of Shandong University: Natural Science, 2014, 49(2):51-57. [8] YOSHINAGA M. Characterization of a free arrangement and conjecture of Edelman and Reiner[J]. Inventiones Mathematicae, 2004, 157(2):449-454. [9] SUYAMA D, TERAO H. The Shi arrangements and the Bernoulli polynomials[J]. The Bulletin of the London Mathematical Society, 2012, 44:563-570. [10] GAO Ruimei, PEI Donghe, TERAO H. The Shi arrangement of the type Dl[KG-*4][J]. Proceedings of the Japan Academy, Series A: Mathematical Sciences, 2012, 88:41-45. [11] SHI Jianyi. The Kazhdan-Lusztig cells in certain affine Weyl groups[M]// Lecture Notes in Mathematics, 1179. New York: Springer-Verlag, 1986. [12] ABE T, TERAO H. The freeness of Shi-Catalan arrangements[J]. European Journal of Combinatorics, 2011, 32:1191-1198. |
[1] | 高瑞梅,初颖. Weyl构形An-1和Bn之间的构形的自由性[J]. 山东大学学报(理学版), 2018, 53(6): 70-75. |
|