您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (12): 55-59.doi: 10.6040/j.issn.1671-9352.0.2014.269

• 论文 • 上一篇    下一篇

证据权重方法与信用风险控制

甘信军1, 杨维强2   

  1. 1. 山东大学数学学院, 山东 济南 250100;
    2. 山东大学金融研究院, 山东 济南 250100
  • 收稿日期:2014-06-11 修回日期:2014-11-07 出版日期:2014-12-20 发布日期:2014-12-20
  • 通讯作者: 杨维强(1976- ),男,博士,讲师,研究方向为金融数学等. E-mail:ywq@sdu.edu.cn E-mail:ywq@sdu.edu.cn
  • 作者简介:甘信军(1986- ),男,博士研究生,研究方向为金融统计、生物统计. E-mail:xjgansdu@163.com
  • 基金资助:
    山东省科技发展计划项目(2011YD01105)

Weight of evidence method and credit risk control

GAN Xin-jun1, YANG Wei-qiang2   

  1. 1. School of Mathematics, Shandong University, Jinan 250100, Shandong, China;
    2. Institute for Financial Studies, Shandong University, Jinan 250100, Shandong, China
  • Received:2014-06-11 Revised:2014-11-07 Online:2014-12-20 Published:2014-12-20

摘要: 研究了证据权重方法在商业银行信用风险分析中的应用,给出了完整的证据权重逻辑回归算法,并且成功地将此算法应用到商业银行真实的企业财务数据,建立了信用风险评级模型,使得商业银行对于企业违约概率的定量刻画更加精准。此外通过与经典方法的比较,验证了该方法的可行性与效率。

关键词: 变量选择, 违约概率, 证据权重方法, 逻辑回归

Abstract: The weight of evidence (WOE) method was adopted on the credit risk control in commercial bank and a full description of the algorithm was proposed. By employing this WOE approach on the real financial data of commercial bank, the risk control model was constructed such that the probability of default can be estimated more precisely. The significant advantages of WOE method over conventional methods were verified, especially in statistical power.

Key words: variable selection, probability of default, logistic regression, weight of evidence

中图分类号: 

  • O212.5
[1] HASTIE T, TIBSHIRARI R, FRIEDMAN J. The Elements of statistical learning[M]. 2nd ed. Berlin: Springer, 2008:119-127; 389-415; 417-455.
[2] SIDDIQI N. Credit risk scorecards[M]. John Wiley & Sons, 2006: 73-127.
[3] 张尧庭, 方开泰. 多元统计分析[M]. 北京: 科学出版社, 1999: 254-328. ZHANG Yaoting, FANG Kaitai. Multivariate statistical analysis[M]. Beijing: Scientific Press Ltd, 1999: 254-328.
[4] HÄRDLE W, MVLLER M, SPERLICH S, et al. Nonparametric and semiparametric models[M]. Berlin: Springer, 2004: 145-165.
[5] GOOD I J. Weight of evidence: a brief survey[J]. Bayesian Statistics. North-Holland, Amsterdam 1983, 2:249-269.
[6] GREIFF W. Maximum entropy, weight of evidence and information retrieval[D]. University of Massachusetts Amherst, 1999.
[7] 茆诗松. 统计手册[M].北京: 科学出版社, 2006. MAO Shisong. Statistical handbook[M]. Beijing: Scientic Press Ltd, 2006.
[1] 李锋1,卢一强2. 部分线性模型的LASSO估计及其渐近性[J]. J4, 2012, 47(3): 93-97.
[2] 王树云1,宋云胜2. 线性模型下基于AIC准测的Bayes变量选择[J]. J4, 2010, 45(6): 43-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!