您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (08): 14-19.doi: 10.6040/j.issn.1671-9352.0.2014.540

• 论文 • 上一篇    下一篇

最大交互数对非齐次T-S模糊系统的潜在影响

索春凤, 王贵君   

  1. 天津师范大学数学科学学院, 天津 300387
  • 收稿日期:2014-12-01 出版日期:2015-08-20 发布日期:2015-07-31
  • 通讯作者: 王贵君(1962- ),男,教授,研究方向为模糊神经网络与模糊系统分析. E-mail:tjwgj@126.com E-mail:tjwgj@126.com
  • 作者简介:索春凤(1990- ),女,硕士研究生,研究方向为模糊神经网络与模糊系统. E-mail:1242362420@qq.com
  • 基金资助:
    国家自然科学基金资助项目(61374009)

Potential influence of maximum interactive number on non-homogeneous T-S fuzzy system

SUO Chun-feng, WANG Gui-jun   

  1. School of Mathematics Sciences, Tianjin Normal University, Tianjin 300387, China
  • Received:2014-12-01 Online:2015-08-20 Published:2015-07-31

摘要: 最大交互数是描述模糊系统前件模糊集的疏密程度,它在各类模糊系统逼近性的实现问题中具有重要意义.首先引入分片线性函数(PLF)和最小推理机重新建立非齐次T-S模糊系统.其次,基于几何直观阐述了最大交互数对该系统的影响,并通过改变最大交互数和随机选取样本点对该系统实际输出实施近似计算.结果表明,剖分数一定时最大交互数对非齐次T-S模糊系统内部结构和取值都具有潜在影响.

关键词: 最大交互数, 分片线性函数, 非齐次T-S模糊系统

Abstract: Maximum interactive number is to describe the degree of density of the antecedent fuzzy sets. It is very important to the approximation problem of all kinds of fuzzy systems. Firstly, the non-homogeneous T-S fuzzy system is established by introducing piecewise linear function (PLF) and minimum inference engine again. Secondly, the effects of the maximum interactive number to this fuzzy system are explained based on the geometric intuitiveness, and the actual output value of the system can be calculated by changing maximum interactive number and randomly selecting sample points. The results show that the internal structure and values of the non-homogeneous T-S fuzzy system have potential influence to the maximum interactive number when the subdivision number is not changed.

Key words: maximum interactive number, piecewise linear function, non-homogeneous T-S fuzzy system

中图分类号: 

  • TP183
[1] TAKAGI T, SUGENO M. Fuzzy identification of system and its applications to modeling and control[J]. IEEE Transactions on Systems Man and Cybernetics,1985, 15(1):116-132.
[2] WANG Lixin, MENDEL J M. Fuzzy basis functions, universal approximation, and orthogonal least-squares learning[J]. IEEE Transanctions on Neural Networks, 1992, 3(5): 807-814.
[3] WANG Lixin. Universal approximation by hierarchical fuzzy systems[J]. Fuzzy Set and Systems, 1998, 93(2):223-230.
[4] 刘普寅,李洪兴.广义模糊系统对于可积函数的逼近性[J].中国科学:E辑 枝术科学,2000,30(5):413-423. LIU Puyin, Li Hongxing. Approximation of generalized fuzzy systems to integrable functions[J]. Science in China: Series E Technological Sciences, 2000, 30(5):413-423.
[5] 刘福才,马丽叶,邵静,等.一类非线性T-S模糊系统的通用逼近性[J].自动化与仪器仪表,2007, 129 (1):8-15. LIU Fucai, MA Liye, SHAO Jing, et al. Universal approximation of a class of nonlinear T-S fuzzy system[J]. Automation & Instrumentation, 2007, 129(1):8-15.
[6] 王贵君,段晨霞.广义分层混合模糊系统及其泛逼近性[J].控制理论与应用,2012, 29(5):673-680. WANG Guijun, DUAN Chenxia. Generalized hierarchical hybrid fuzzy systems and their universal approximation[J]. Control Theory & Applications, 2012, 29(5):673-680.
[7] 王贵君,李晓萍,隋晓琳.广义Mamdani模糊系统依K-积分模的泛逼近性及其实现过程[J].自动化学报,2014, 40(1):143-148. WANG Guijun, LI Xiaoping, SUI Xiaolin. Universal approximation and its realize process of generalized Mamdani fuzzy system in K-integral norms[J]. Acta Automatica Sinica, 2014, 40(1):143-148.
[8] 彭维玲.基于剖分模糊系统输入空间的多维分片线性函数的构造及逼近[J].系统科学与数学,2014,34 (3):340-351. PENG Weiling. Universal approximation of square piecewise linear functions in K-integral norms in fuzzy system[J]. Journal of Systems Science and Mathematical Sciences, 2014, 34(3):340-351.
[1] 肖炜茗,王贵君. 基于Bernstein多项式的SISO三层前向神经网络的设计与逼近[J]. 山东大学学报(理学版), 2018, 53(9): 55-61.
[2] 吴瑞海 董吉文 段琪庆. 变尺度混沌粒子群与小波的地基沉降预测应用[J]. J4, 2009, 44(11): 75-78.
[3] . 一种基于驾驶员学习过程的在线估计算法[J]. J4, 2009, 44(7): 83-88.
[4] 朱世伟,赛 英 . 基于主成分分析和粗径向基神经网络的财务预警模型研究[J]. J4, 2008, 43(11): 48-53 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!