山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (11): 60-66.doi: 10.6040/j.issn.1671-9352.0.2014.568
薛丽霞, 李志慧, 谢佳丽
XUE Li-xia, LI Zhi-hui, XIE Jia-li
摘要: 将含有3条超边的超圈存取结构分为两类:一类是任意一条超边都没有属于自己的独立点集;另一类是至少存在一条超边有属于自己的独立点集。对第一类超圈存取结构,用Shamir方案构造了一个理想的秘密共享方案,从而证明了其最优信息率等于1;对第二类超圈存取结构用信息论和λ-分解方法证明了其最优信息率等于2/3。给出了参与者人数为6、7且含有3条超边共86种互不同构的超圈存取结构,并计算了其最优信息率。
中图分类号:
[1] 刘木兰, 张志芳. 密钥共享体制和安全多方计算[M]. 北京:电子工业出版社, 2008. LIU Mulan, ZHANG Zhifang. Secret sharing schemes and secure multiparty compulation[M]. Beijing:Publishing House of Electronics Industry, 2008. [2] 宋云, 李志慧, 李永明. 极小特权数组上的理想多秘密共享方案[J]. 中国科学:信息科学, 2014, 44(5):610-622. SONG Yun, LI Zhihui, LI Yongming. An ideal multi-secret sharing scheme based on minimal privileged coalitions[J]. Scientia Sinica Informationis, 2014, 44(5):610-622. [3] Douglas R Stinson.密码学原理与实践[M]. 冯登国,译.3版.北京:电子工业出版社, 2009. Douglas R Stinson. Cryptography theory and practice[M]. FENG Dengguo, trans. 3rd ed. Beijing:Publishing House of Electronics Industry, 2009. [4] Stanislaw Spiez, Jerzy Urbanowicz, Aleksander Zablocki. On constructing privileged coalitions in Shamir's type scheme[J]. Finite Fields and Their Applications, 2013, 19(1):73-85. [5] 杜宇韬, 鲍皖苏, 管文强,等. 基于密集编码的多方与多方量子秘密共享[J]. 电子与信息学报, 2013, 35(11):2623-2629. DU Yutao, BAO Wansu, GUAN Wenqiang, et al. Multiparty-to-multiparty quantum secret sharing based on dense-coding[J]. Journal of Electronics & Information technology, 2013, 35(11):2623-2629. [6] DIJK V. On the information rate of perfect secret sharing schemes[J]. Designs codes and Cryptography, 1995, 6(2):143-169. [7] GHARAHI M, DEHKORDI M H. The complexity of the graph access structures on six participants[J]. Designs, Codes and Cryptography, 2013, 67(2):169-173. [8] GIOVANNI D C, CLEMENTE G. Hypergraph decomposition and secret sharing[J]. Discrete Applied Mathematics, 2009, 157(5):928-946. [9] 李志慧, 杨丽杰.7人参与者的一类超图存取结构的最优信息率[J]. 陕西师范大学学报, 2014, 42(1):1-6. LI Zhihui, YANG Lijie. The optimal information rate of a type of access structures based on hypergraphs on seven Participants[J]. Journal of Shaanxi Normal University, 2014, 42(1):1-6. [10] WEN-AI JACKSON, KEITH M. MARTIN. Perfect secret sharing schemes on five participants[J]. Designs, Codes and Cryptography, 1996, 9(3):267-286. [11] 张娜, 李志慧. 参与者人数为九的一类连通超图存取结构的信息率[J].山东大学学报:理学版,2014, 49(9):74-82. ZHANG Na, LI Zhihui. The optimal information rate of a type of access structures based on connected hypergraphs on nine participants[J]. Journal of Shandong University:Natural Science, 2014, 49(9):74-82. [12] LU Huichuan, FU Hunglin. New bounds on the average information rate of secret-sharing schemes for graph-based weighted threshold access structures[J]. Information Sciences, 2013, 240(5):83-94. [13] MARTÍ-FARRÉ J, PADRÓ C. Secret sharing schemes with three or four minimal qualified subsets[J]. Designs, Codes and Cryptography, 2005, 34(1):17-50. [14] Alan Tucker. Applied combinatorics[M]. 2nd ed. New York:Wiley, 2003:19-20. [15] SARVEPALLI P. Bounds on the information rate of quantum-secret sharing schemes[J]. Phys Rev A, 2011, 83:042324. |
[1] | 焦鸿儒,秦静. 可实现全部超星量子存取结构的量子秘密共享方案[J]. 山东大学学报(理学版), 2018, 53(9): 62-68. |
[2] | 徐廷廷,李志慧,麻敏. 一种新型的可改进的量子秘密共享方案[J]. 山东大学学报(理学版), 2017, 52(3): 8-15. |
[3] | 张娜, 李志慧. 参与者人数为9的一类连通超图存取结构的信息率[J]. 山东大学学报(理学版), 2014, 49(09): 74-82. |
|