山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (10): 27-31.doi: 10.6040/j.issn.1671-9352.0.2015.072
王珊珊, 齐恩凤
WANG Shan-shan, QI En-feng
摘要: 给出了k-连通图中最长圈上的可收缩边的数目,得到如下结果:任意断片的阶至少为「k/2+1 的k-连通图中最长圈上至少有3 条可收缩边;更进一步,若该k-连通图中存在哈密顿圈,则哈密顿圈上至少有6 条可收缩边。
中图分类号:
[1] BONDY J A, MURTY U S R. Graph theory with applications[M]. London: The Macmillan Press Ltd, 1976. [2] TUTTE W T. A theory of 3-connected graphs[J]. Indag Math, 1961, 23:441-455. [3] THOMASSEN C. Non-separating cycles in k-connected graphs[J]. Graph Theory, 1981, 5:351-354. [4] EGAWA Y. Contractible edges in n-connected graphs with minimum degree greater than or equal to[5n/4][J]. Graphs and Combinatorics, 1990, 7:15-21. [5] KRIESELL M. A degree sum condition for the existence of a contractible edge in a k-connected graph[J]. Comb Theory Ser, 2001, B82:81-101. [6] KRISELL M. A survey on contractible edges in graph of a prescribed vertex connectivity[J]. Graphs and Combinatorics, 2002, 18(1):1-30. [7] 杨朝霞. 某些5-连通图中最长圈上的可收缩边[J].山东大学学报:理学版,2008, 43(6):12-14. YANG Zhaoxia. The contractible edges of the longest cycle in some 5-connected graphs[J]. Journal of Shandong University: Naturnal Science, 2008, 43(6):12-14. |
[1] | 王倩. k-连通图中生成树和完美匹配上的可收缩边[J]. 山东大学学报(理学版), 2016, 51(8): 29-34. |
[2] | 杨朝霞 . 某些5-连通图中最长圈上的可收缩边[J]. J4, 2008, 43(6): 12-14 . |
|