您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (2): 79-84.doi: 10.6040/j.issn.1671-9352.0.2015.076

• • 上一篇    下一篇

Abelian范畴中Gorenstein内射对象

程海霞,殷晓斌   

  1. 安徽师范大学数学计算机科学学院, 安徽 芜湖 241000
  • 收稿日期:2015-02-27 出版日期:2016-02-16 发布日期:2016-03-11
  • 作者简介:程海霞(1979— ), 女, 博士, 讲师, 研究方向为同调代数. E-mail:c701332@mail.ahnu.edu.cn
  • 基金资助:
    2011年国家自然科学基金研究项目(11071097);2014年安徽师范大学博士科研资助项目(071406)

Gorenstein injective objects in Abelian categories

CHENG Hai-xia, YIN Xiao-bin   

  1. School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, Anhui, China
  • Received:2015-02-27 Online:2016-02-16 Published:2016-03-11

摘要: 给出了Abelian范畴A和复形范畴Ch(A)中X -Gorenstein内射对象及YX -Gorenstein内射对象的定义, 其中X ⊆A, YX={Y∈Ch(A)|Y是正合复形且KerdnY ∈X }。 研究了这两类Gorenstein内射对象的同调性质及它们的区别和联系。 证明了若X是包含所有内射对象的自正交的满子范畴, 则X∈Ch(A)是YX -Gorenstein内射的当且仅当Xi都是X -Gorenstein内射的。 在此基础上研究了两类范畴中X -Gorenstein内射维数和YX -Gorenstein内射维数以及它们之间的关系。 在一定的条件下, YX -G I dim(X)=Sup{X -G I dim(Xi)|i∈Z}。

关键词: 预覆盖, X -Gorenstein内射维数, X -Gorenstein内射对象

Abstract: Let A be an abelian category with enough injective objects and X a full subcategory of A. The definitions of X -Gorenstein injective object and YX -Gorenstein injective object are given, where YX={Y∈Ch(A)|Y is acyclic and KerdnY∈X. Under certain conditions, these two Gorenstein injective objects are related in a nice way. In particular, if I(A)⊆X, X∈Ch(A)is YX -Gorenstein injective if and only if Xi is X -Gorenstein injective for each i, when X is a self-orthogonal class. Subsequently, the relationships between X -Gorenstein injective dimension and YX -Gorenstein injective dimension are considered.

Key words: precover, X -Gorenstein injective object, X -Gorenstein injective dimension

中图分类号: 

  • O154.2
[1] ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Math Z, 1995, 220(4):611-633.
[2] ENOCHS E E, GARCÍA ROZAS J R. Gorenstein injective and projective complexes[J]. Comm Algebra, 1998, 26(5):1657-1674.
[3] HOLM H. Gorenstein homological dimensions[J]. J Pure Appl Algebra, 2004, 189:167-193.
[4] LIU Zhongkui, ZHANG Chunxia. Gorenstein projective dimensions of complexes[J]. Acta Math Sinica, 2011, 27(7):1395-1404.
[5] YANG Xiaoyan, LIU Zhongkui. Gorenstein projective, injective and flat complexes[J]. Comm Algebra, 2011, 39(5):1705-1721.
[6] ENOCHS E E, JENDA O M G. Xu J Z. Orthogonality in the category of complexes[J]. Math J Okayama Univ, 1996, 38:25-46.
[7] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin: Walter de Gruyter, 2000: 13-36.
[8] ENOCHS E E, JENDA O M G. Relative homological algebra 2[M]. Berlin: Walter de Gruyter, 2011: 105-162.
[9] AVRAMOV L L, Foxby H B. Homological dimensions of unbounded complexes[J]. J Pure Appl Algebra,1991, 71:129-155.
[10] BENNIS D, MAHDOU N, OUARGHI K. Rings over which all modules are strongly Gorenstein projective[J]. J Rocky Mountain Math, 2010, 40(3):749-759.
[11] ZHU Xiaosheng. Resolving resolution dimensions[J]. Algebra Represent Theor, 2013, 16(4):1165-1191.
[12] GILLESPIE J. The flat model structure on Ch(R)[J]. Trans Amer Math Soc, 2004, 356(8):3369-3390.
[13] EKLOF P, TRLIFAJ J. How to make Ext vanish[J]. Bull London Math Soc, 2001, 33(4):41-51.
[1] 饶炎平, 杨刚. Gorenstein弱平坦模[J]. 山东大学学报(理学版), 2015, 50(10): 68-75.
[2] 陈文静. 关于Gorenstein FP-内射复形[J]. 山东大学学报(理学版), 2014, 49(05): 81-85.
[3] 宋贤梅. 关于F-覆盖的存在性[J]. J4, 2012, 47(10): 4-6.
[4] 朱辉辉,周吉. Gorenstein内合冲模[J]. J4, 2011, 46(4): 64-67.
[5] 丰 晓,张顺华 . τ-平坦试验模与τ-平坦覆盖[J]. J4, 2007, 42(1): 31-34 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!