您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (1): 14-19.doi: 10.6040/j.issn.1671-9352.0.2015.079

• • 上一篇    下一篇

种子生长法制备ZnO纳米棒组装结构

张耀军,万刚强,颜磊,马庆昌,李东祥*,赵继宽   

  1. 青岛科技大学化学与分子工程学院, 生态化工国家重点实验室培育基地, 山东 青岛 266042
  • 收稿日期:2015-02-27 出版日期:2016-01-16 发布日期:2016-11-29
  • 通讯作者: 李东祥(1972— ),男,博士,副教授,硕士生导师,研究方向为纳米材料的胶体化学合成与应用. E-mail:lidx@iccas.ac.cn E-mail:erikzhangyaojun@163.com
  • 作者简介:张耀军(1990— ),男,硕士研究生,研究方向为纳米材料合成. E-mail:erikzhangyaojun@163.com
  • 基金资助:
    国家自然科学基金资助项目(21073102/21273123);青岛市基础研究计划资助项目(12-1-4-3-(10)-jch/12-1-4-3-(29)-jch)

Assembled nanostructures of ZnO nanorods prepared by seed growth method

ZHANG Yao-jun, WAN Gang-qiang, YAN Lei, MA Qing-chang, LI Dong-xiang*, ZHAO Ji-kuan   

  1. State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
  • Received:2015-02-27 Online:2016-01-16 Published:2016-11-29

摘要: 采用微波加热方法以Zn-Al类水滑石纳米颗粒为种子、以醋酸锌为前驱物制备了多种形貌的ZnO纳米棒组装结构,使用SEM和XRD进行了表征。研究发现,当种子液用量较低时,容易制备出ZnO纳米棒的花簇结构,其中ZnO纳米棒的长度在几百纳米到2 μm之间,直径在100~300 nm之间。当种子液用量较大时,容易得到类水滑石的大片晶两面附生ZnO纳米棒或纳米管的多重结构。

关键词: ZnO纳米棒, 微波合成, 种子生长法, 纳米结构

Abstract: Herein, various assembled nanostructures of ZnO nanorods were prepared by microwave synthesis from zinc acetate precursor in presence of Zn-Al hydrotalcite seeds and characterized by SEM and XRD. It was found that the flower-like nanostructures of ZnO nanorods were prepared at a relative low seed usage, in which ZnO nanorods had a length of several hundred nanometer to two micrometer and a diameter of 100-300 nanometer. Whereas, the hierarchical nanostructures of large Zn-Al hydrotalcite plates with “two-side” attached ZnO nanorods or nanotubules were easily obtained as adding a large amount of seed solution.

Key words: ZnO nanorods, microwave synthesis, nanostructures, seed growth method

中图分类号: 

  • O648.1
[1] CHOI M J, MCBEAN K E, NG P H R, et al. An evaluation of nanostructured zinc oxide as a fluorescent powder for fingerprint detection[J]. Journal of Material Science, 2008, 43(2):732-737.
[2] WANG Nengwen, YANG Yuhua, YANG Guowei. Great blue-shift of luminescence of ZnO nanoparticle array constructed from ZnO quantum dots[J]. Nanoscale Research Letters, 2011, 6:338.
[3] CAI Fengshi, WANG Jing, YUAN Zhihao, et al. Magnetic-field effect on dye-sensitized ZnO nanorods-based solar cells[J]. Journal of Power Sources, 2012, 216:269-272.
[4] RAULA M, RASHID M H, PAIRA T K, et al. Ascorbate-assisted growth of hierarchical ZnO nanostructures: sphere, spindle, and flower and their catalytic properties[J]. Langmuir, 2010, 26(11):8769-8782.
[5] XU Sheng, WANG Zhonglin. One-dimensional ZnO nanostructures: solution growth and functional properties[J]. Nano Research, 2011, 4(11):1013-1098.
[6] QIU Xiaoqing, LI Liping, ZHENG Jing, et al. Origin of the enhanced photocatalytic activities of semiconductors: a case study of zno doped with Mg2+[J]. Journal of Physical Chemistry C, 2008, 112(32):12242–12248.
[7] 谢娟, 王虎, 段明. ZnO自组装薄膜的可控生长及其光催化性能[J] , 物理化学学报, 2011, 27(01):193-198. XIE Juan, WANG Hu, DUAN Ming. Controlled growth of self-assembled ZnO thin films and characterization of their photocatalytic properties[J]. Acta Physico-Chimica Sinica, 2011, 27(1):193-198.
[8] ZHAO Yufei, WEI Min, LU Jun, et al. Biotemplated hierarchical nanostructure of layered double hydroxides with improved photocatalysis performance[J]. Acs Nano, 2009, 3(12):4009-4016.
[9] MARTIN C E, VALENTE J S, PAVON T, et al. Natividad R-chlorophenol oxidation photocatalyzed by a calcined mg-al-zn layered double hydroxide in a co-current downflow bubble column[J]. Industrial & Engineering Chemistry Research, 2011, 50(20):11544-11552.
[10] LU Fang, CAI Weiping, ZHANG Yugang. ZnO hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance[J]. Advanced Functional Materials, 2008, 18(7):1047-1056.
[11] PACHOLSKI C, KORNOWSKI A, WELLER H. Self-assembly of ZnO: from nanodots to nanorods[J]. Angewandte Chemie International Edition, 2002, 41(7):1188-1191.
[12] 罗志强, 张孝彬, 程继鹏,等. 化学溶液沉积法制备单分散氧化锌纳米棒阵列[J]. 化学学报, 2005, 63(18):1656-1660. LUO Zhiqiang, ZHANG Xiaobin, CHENG Jipeng, et al. Synthesis of monodispersed zno nanorod array films by chemical solution deposition[J]. Acta Chimica Sinica, 2005, 63(18):1656-1660.
[13] 韩楠楠, 王慧, 栗娜,等. 电沉积制备ZnO纳米棒修饰电极上氧化还原蛋白的电化学行为[J]. 物理化学学报, 2011, 27(02):468-472. HAN Nannan, WANG Hui, LI Na, et al. Electrochemical behavior of redox proteins on ZnO nanorod-modified electrodes prepared by electrodeposition[J]. Acta Physico-Chimica Sinica, 2011, 27(02):468-472.
[14] 刘志锋, 雅菁, 鄂磊. 电沉积种子层化学控制生长氧化锌纳米棒和纳米管[J]. 无机化学学报, 2009, 25(6):995-999. LIU Zhifeng, YA Jing, E Lei. Controlled growth of ZnO nanorods and nanotubes by chemical method on electrodeposited seed layer[J]. Chinese Journal of Inorganic Chemistry, 2009, 25(6):995-999.
[15] KOH Y W, LOH K P. Hexagonally packed zinc oxide nanorod bundles on hydrotalcite sheets[J]. Journal of Materials Chemistry, 2005, 15(25):2508-2514.
[16] CHO S, KIM S, OH E, et al. Synthesis of hierarchical hexagonal zinc oxide/zinc aluminium hydroxide heterostructures through epitaxial growth using microwave irradiation[J]. CrystEngComm, 2009, 11(8):1650-1657.
[17] PRADHAN P, ALONSO J C, BIZARRO M. Photocatalytic performance of ZnO: Al films under different light sources[J]. International Journal of Photoenergy, 2012, 2012:780642.
[18] 谢志强, 陈拥军. 氧化锌纳米棒的水热合成及其光催化性能[J]. 化学研究, 2012, 23(5):52-56. XIE Zhiqiang, CHEN Yongjun, Hydrothermal synthesis and photocatalytic activity of zinc oxide nanorods[J]. Chemical Research, 2012, 23(5):52-56.
[19] 张丽, 阎建辉, 周民杰,等. 高比表面空心球状ZnO/ZnAl2O4复合光催化剂制备及活性[J]. 无机化学学报, 2012, 28(9):1827-1834. ZHANG Li, YAN Jianhui, ZHOU Minjie, et al. Preparation and photocatalytic property of hollow sphere-like ZnO/ZnAl2O4 composite photocatalysts with high specific surface area[J]. Chinese Journal of Inorganic Chemistry, 2012, 28(9):1827-1834.
[20] WAN Gangqiang, LI Dongxiang, LI Chunfang, et al. From Zn-Al layered double hydroxide to ZnO nanostructure: Gradually etching by sodium hydroxide[J]. Chinese Chemical Letters, 2012, 23(12):1415-1418.
[21] PANDA A B, GLASPELL G, El-SHALL M S. Microwave synthesis of highly aligned ultra narrow semiconductor rods and wires[J]. Journal of American Chemical Society, 2006, 128(9):2790-2791.
[22] 张卫新, 王强, 任祥斌,等. 一维纳米结构MnO2的微波合成及其电化学性能[J]. 高等学校化学学报, 2008, 29(10):2025-2028. ZHANG Weixin, WANG Qiang, REN Xiangbin, et al. Microwave synthesis and electrochemical property of one dimensional nanostructured MnO2[J]. Chemical Journal of Chinese Universities, 2008, 29(10):2025-2028.
[23] 彭银, 刘正银, 刘述华. 微波法合成一维结构Cd(OH)2螺旋形纳米线[J]. 高等学校化学学报, 2010, 31(1):7-10. PENG Yin, LIU Zhengyin, LIU Shuhua. Facile microwave heating approach to spiral Cd(OH)2 nanowires with 1D nanostructure[J]. Chemical Journal of Chinese Universities, 2010, 31(1):7-10.
[24] VAYSSIERES L, KEIS K, LINDQUIST S-E, et al. Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO[J]. The Journal of Physical Chemistry B, 2001, 105(17):3350-3352.
[25] LIU Xiaoxin, JIN Zhengguo, BU Shaojing, et al. Effect of buffer layer on solution deposited ZnO films[J]. Materials Letters, 2005, 59(29-30):3994-3999.
[26] 孔祥荣, 邱晨, 刘强,等. 微波法快速合成氧化锌纳米棒[J]. 传感技术学报, 2006, 19(5):2331-2336. KONG Xiangrong, QIU Chen, LIU Qiang, et al. A rapid and simple route to synthesizing ZnO nanorods by using microwave irradiation[J]. Chinese Journal of Sensors and Actuators, 2006, 19(5):2331-2336.
[1] 潘金鼎,李佳琪,冯艳,陈运法,杨军. 负载型钌基纳米结构用于挥发性有机化合物催化氧化的研究[J]. 山东大学学报(理学版), 2017, 52(5): 18-24.
[2] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!