您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (2): 6-11.doi: 10.6040/j.issn.1671-9352.0.2015.150

• • 上一篇    下一篇

幂级数弱McCoy环

李敏1,王尧1,任艳丽2*   

  1. 1.南京信息工程大学数学与统计学院, 江苏 南京 210044;2.南京晓庄学院数学与信息技术学院, 江苏 南京 211171
  • 收稿日期:2015-04-07 出版日期:2016-02-16 发布日期:2016-03-11
  • 通讯作者: 任艳丽(1965— ), 女, 硕士, 教授, 研究方向为环论. E-mail: renyanlisx@163.com E-mail:liminyjs@163.com
  • 作者简介:李敏(1987— ), 女, 硕士研究生, 研究方向为代数学及其应用. E-mail: liminyjs@163.com
  • 基金资助:
    国家自然科学基金资助项目(41275117);江苏省自然科学基金资助项目(BK20141476)

Power series weak McCoy rings

LI Min1, WANG Yao1, REN Yan-li2*   

  1. 1. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China;
    2. School of Mathematics and Information Technology, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu, China
  • Received:2015-04-07 Online:2016-02-16 Published:2016-03-11

摘要: 引入了幂级数弱McCoy环的概念。证明了:(1)设{Ri|i∈I}是一族环,如果每一个Ri(i∈I)是幂级数弱McCoy环,i∈IRi是幂级数弱McCoy环;(2)如果环R是一个诣零半交换环,R[x]是幂级数弱McCoy环当且仅当R是幂级数弱McCoy环;(3)设环R是一个α-相容的诣零半交换环,R[x;α]是幂级数弱McCoy环。

关键词: 幂级数, 幂级数McCoy环, 幂级数弱Armendariz环, 幂级数弱McCoy环, McCoy环

Abstract: The concept of a power series weak McCoy ring is introduced. It is shown that(1)if every Ri(i∈I) is a power series weak McCoy ring, then ∏i∈IRi is a power series weak McCoy ring;(2)If R is a nil-semicommutative ring, then R[x] is a power series weak McCoy ring if and only if R is a power series weak McCoy ring;(3)If R is a α-compatible nil-semicommutative ring, then R[x;α] is a power series weak McCoy ring.

Key words: power series weak McCoy ring, power series weak Armendariz ring, McCoy ring, power series McCoy ring, power series

中图分类号: 

  • O153.3
[1] KIM N K, LEE K H, LEE Y. Power series rings satisfying a zero divisor property[J]. Comm Algebra, 2006, 34(6):2205-2218.
[2] HIZEM S. A note on nil power serieswise Armendariz rings[J]. Rend Circ Mat Palermo, 2010, 59(1):87-99.
[3] YANG Shizhou, SONG Xuemei, LIU Zhongkui. Power-serieswise McCoy rings[J]. Algebra Colloq, 2011, 18(2):301-310.
[4] HONG C Y, KIM N K, KWAK T K. Nilradicals of skew power series rings[J]. Bull Korean Math Soc, 2004, 41(3):507-519.
[5] HUH C, KIM C O, KIM E J, et al. Nilradicals of power series rings and nil power series rings[J]. J Korean Math Soc, 2005, 42(5):1003-1015.
[6] HUH C, KIM H K, LEE D S, et al. Prime radicals of formal power series rings[J]. Bull Korean Math Soc, 2001, 38(4):623-633.
[7] NASR-ISFAHANI A, MOUSSAVI A. On skew power serieswise Armendariz rings[J]. Comm Algebra, 2011, 39(9):3114-3132.
[8] YING Zhiling, CHEN Jianlong, LEI Zhen. Extensions of McCoy rings[J]. Northeast Math J, 2008, 24(1):85-94.
[9] MOHAMMADI R, MOUSSAVI A, ZAHIRI M. On nil-semicommutative rings[J]. Int Electron J Algebra, 2012, 11:20-37.
[10] ANNIN S. Associated primes over skew polynomial rings[J]. Comm Algebra, 2002, 30(5):2511-2528.
[11] OUYANG Lunqun, CHEN Huanyin. On weak symmetric rings[J]. Comm Algebra, 2010, 38(2):697-713.
[12] MOHAMMADI R, MOUSSAVI A, ZAHIRI M. Weak McCoy Ore extensions[J]. Intern Math Forum, 2011, 6(2):75-86.
[1] 王尧, 张玖琳, 任艳丽. 幂零p.p.-环和幂零Baer环的Ore扩张[J]. 山东大学学报(理学版), 2015, 50(04): 76-81.
[2] 费盼盼, 吴俊, 朱利民. M-弱拟McCoy环[J]. 山东大学学报(理学版), 2014, 49(10): 11-16.
[3] 张万儒. 斜诣零McCoy环[J]. 山东大学学报(理学版), 2014, 49(03): 57-62.
[4] 王文康. 中心线性 McCoy 环[J]. J4, 2013, 48(12): 6-13.
[5] 郭莉琴,任胜章,何建伟,邵海琴. 单边exchange环及其扩张[J]. J4, 2011, 46(4): 70-74.
[6] 朱先军. 一类二阶迭代泛函微分方程的解析解[J]. J4, 2009, 44(12): 77-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!