您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (3): 60-69.doi: 10.6040/j.issn.1671-9352.0.2015.170

• • 上一篇    下一篇

多时期匹配决策的等级置信度融合法

陈圣群1,2,王应明1*,施海柳1,2   

  1. 1.福州大学决策科学研究所, 福建 福州 350108;2.福建江夏学院电子信息科学学院, 福建 福州 350108
  • 收稿日期:2015-04-20 出版日期:2016-03-20 发布日期:2016-04-07
  • 通讯作者: 王应明(1964— ),男,教授,博士生导师, 研究方向为决策理论与方法、数据包络分析等. E-mail:msymwang@ hotmail.com E-mail:csq255@qq.com
  • 作者简介:陈圣群(1977— ),男,副教授,博士,研究方向为决策与优化算法. E-mail:csq255@qq.com
  • 基金资助:
    国家自然科学基金资助项目(71371053,71403055);福建省自然科学基金资助项目(2015J01279);福建省中青年教师教育科研资助项目(JA14322);福建江夏学院青年科研项目(JXZ2014003)

Data fusion method for multiperiod matching decision-making with rank belief degrees

CHEN Sheng-qun1, 2, WANG Ying-ming1*, SHI Hai-liu1, 2   

  1. 1. Decision Sciences Institute, Fuzhou University, Fuzhou 350108, Fujian, China;
    2. Department of Electronic Information Science, Fujianjiangxia University, Fuzhou 350108, Fujian, China
  • Received:2015-04-20 Online:2016-03-20 Published:2016-04-07

摘要: 针对多时期匹配问题,提出了一种基于等级置信度的融合方法。给出了多时期匹配决策问题的描述; 将不同时间点关于各属性的综合评价值转换成等级置信度信息。在此基础上,把双边的等级置信度信息作为证据,并通过证据融合求出匹配的融合度;接着,构建基于融合度的指派模型来获得整体最优解。通过算例说明了该方法的应用。

关键词: 证据融合, 多时期, 匹配决策, 等级置信度

Abstract: A rank belief degrees fusion method has been proposed for solving the multiperiod matching problem in this paper. Firstly, the description of the multiperiod matching problem is given. Secondly, the comprehensive values of each arrtibute at different instants of time are transformed into rank belief degrees. On this basis, two-sided rank belief degrees are taken as pieces of evidence and fusion degrees of matching are gotten by evidence fusion. Then, an assignment model based on fusion degrees is constructed from the global perspective in order to obtain the best solution. Finally, an illustrative example is given to demonstrate the application of the proposed approach.

Key words: evidence fusion, rank belief degrees, Matching decision-making, multiperiod

中图分类号: 

  • C934
[1] GALE D, SHAPLEY L. College admissions and the stability of marriage[J]. American Mathematical Monthly, 1962, 69(1):9-15.
[2] LIN S Y, HORNG S J, KAO T W, et al. Solving the bi-objective personnel assignment problem using particle swarm optimization[J]. Applied Soft Computing, 2012, 12(9):2840-2845.
[3] LIN H T. A job placement intervention using fuzzy approach for two-way choice[J]. Expert Systems with Applications, 2009, 36(2):2543-2553.
[4] KLERKX L L. Matching Demand and Supply in the Agricultural Knowledge Infrastructure: Experiences with Innovation Intermediaries[J]. Food Policy, 2008, 33(3):260-276.
[5] 蒋忠中,樊治平,汪定伟.电子中介中具有模糊信息且需求不可分的多属性商品交易匹配问题[J].系统工程理论与实践, 2011,31(12):2355-2366. JIANG Zhongzhong, FAN Zhiping, WANG Dingwei. Trade matching for multi-attribute exchanges with fuzzy information and indivisible demand in E-brokerage[J]. Systems Engineering-Theory & Practice, 2011, 31(12): 2355-2366.
[6] NICOLAISEN J, PETROV V, TESFATSION L. Market power and efficiency in a computational electricity market with discriminatory double-auction pricing[J]. IEEE Transactions on Evolutionary Computation, 2001, 5(5):504-523.
[7] IWAMA K, MIYAZAKI S, YAMAUCHI N. A approximation algorithm for the stable marriage problem[J]. Algorithmic, 2008, 51(3):342-356.
[8] 乐琦.基于累积前景理论的具有不确定偏好序信息的双边匹配决策方法[J].系统科学与数学,2013,33(9):1061-1070. YUE Qi. Decision method for the two-sided matching with uncertain preference ordinal information based on cumulative prospect theory[J]. Journal of Systems Science and Mathematical Sciences, 2013, 33(9):1061-1070.
[9] 梁海明,姜艳萍.一种基于弱偏好序信息的双边匹配决策方法[J].系统工程学报,2014,29(2):153-159. LIANG Haiming, JIANG Yanping. Method for two-sided matching decision-making based on the weak preference ordering information[J]. Journal of Systems Engineering, 2014, 29(2):153-159.
[10] 张莉莉,胡祥培. 基于人力资本竞优结构的“团队-作业对象”匹配决策模型[J].管理工程学报,2015,29(1):1-7. ZHANG Lili, HU Xiangpei. “Team-working object” matching model based on human capital competition for optimal first structure[J]. Journal of Industrial Engineering and Engineering Management, 2015, 29(1):1-7.
[11] 乐琦.无差异区间型多指标匹配决策方法[J].系统工程学报,2014,29(1):41-47. YUE Qi. Indifference interval multiple criteria matching decision method[J]. Journal of Systems Engineering, 29(1):41-47.
[12] 陈希,樊治平,李玉花.IT服务供需双边匹配的模糊多目标决策方法[J].管理学报,2011,32(2):297-302. CHEN Xi, FAN Zhipin, LI Yuhua. A Fuzzy multi-objective decision making method for two-sided matching of supply and demand in IT service[J]. Chinese Journal of Management, 2011, 32(2):297-302.
[13] HUANG D K, CHIU H N, YEH R H, et al. A fuzzy multi-criteria decision making approach for solving a bi-objective personnel assignment problem[J]. Computers & Industrial Engineering, 2009, 56(1):1-10.
[14] 梁海明, 姜艳萍. 二手房组合交易匹配决策方法[J]. 系统工程理论实践, 2015, 35(2):358-367. LIANG Haiming, JIANG Yanping. Decision-making method on second-hand house combination matching[J]. Systems Engineering-Theory & Practice, 2015, 35(2):358-367.
[15] 乐琦.基于不完全序关系信息的双边匹配决策方法[J]. 浙江大学学报(理学版), 2014, 41(5):523-527. YUE Qi. Decision method for two-sided matching based on incomplete order relation information[J]. Journal of Zhejiang University(Science Edition), 2014, 41(5):523-527.
[16] DEMPSTER A P. Upper and lower probabilities induced by a multivalued mapping[J]. Annals of Mathematical Statistics, 1967, 38(2):325-339.
[17] SHAFER G. A mathematical theory of evidence[M]. Princeton: Princeton University Press, 1976.
[18] XIAO Z, YANG X, PANG Y, et al. The prediction for listed companies’ financial distress by using multiple prediction methods with rough set and dempster-shafer evidence theory[J]. Knowledge-Based Systems, 2012, 26:196-206.
[19] ADAIR D, JAEGER M. Application of evidence theory to construction projects[J]. The International Journal of the Constructed Environment, 2014, 4(4):25-34.
[20] ZHANG Z, LIU T, ZHANG W. Novel Paradigm for constructing masses in dempster-shafer evidence theory for wireless sensor networks multisource data fusion[J]. Sensors, 2014, 14(4):7049-7065.
[21] YANG J B, XU D L. Evidential reasoning rule for evidence combination[J]. Artificial Intelligence, 2013, 205:1-29.
[22] 陈圣群,王应明,施海柳.基于序数偏差融合度的动态匹配决策方法[J].运筹与管理, 2014,23(1):59-65. CHEN Shengqun, WANG Yingming, SHI Hailiu. A dynamic matching ecision-making method based on ordinal deviation fusion degrees[J]. Operations Research and Management Science, 2014, 23(1):59-65.
[23] 陈圣群, 王应明,施海柳. 多属性匹配决策的等级置信度融合法[J]. 系统工程学报, 2015,30(1):25-33. CHEN Shengqun, WANG Yingming, SHI Hailiu. Data fusion method for multi-arrtibute matching decision-making with rank belief degrees[J]. Journal of Systems Engineering, 2015, 30(1):25-33.
[24] WANG Y M, YANG J B, XU D L, et al. The evidential reasoning approach for multiple attribute decision making using interval belief degrees[J]. European Journal of Operational Research, 2006, 175(1):35-66.
[1] 黄顺亮,郝秀梅,史开泉, . 单向S-对偶粗决策规律与决策规律挖掘[J]. J4, 2007, 42(10): 31-36 .
[2] 张方伟,曲淑英,王志强,姚炳学,曾现洋 . 偏差最小化方法及其在多属性决策中的应用[J]. J4, 2007, 42(3): 32-35 .
[3] 胡 钢,冯向前,魏翠萍,李宗植 . 区间数判断矩阵满意一致性递推排序方法研究[J]. J4, 2007, 42(11): 89-93 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!