您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (7): 1-10.doi: 10.6040/j.issn.1671-9352.0.2016.266

• •    下一篇

幽默计算及其应用研究

林鸿飞,张冬瑜,杨亮,徐博   

  1. 大连理工大学计算机科学与技术学院, 辽宁 大连 116023
  • 收稿日期:2016-06-06 出版日期:2016-07-20 发布日期:2016-07-27
  • 基金资助:
    国家自然科学基金资助项目(61572102,61562080,61402075);辽宁省自然科学基金资助项目(2014020003);“十二五”国家科技支撑计划项目(2015BAF20B02)文章编号:1671-9352(2016)07-0001-10DOI:106040/jissn1671-935202016266幽默计算及其应用研究林鸿飞,张冬瑜,杨亮,徐博

Computational humor researches and applications

  1. School of Computer Science and Technology, Dalian University of Technology, Dalian 116023, Liaoning, China
  • Received:2016-06-06 Online:2016-07-20 Published:2016-07-27

摘要: 幽默作为一种特殊的语言表达方式,是生活中活跃气氛、化解尴尬的重要元素。随着人工智能的快速发展,如何利用计算机技术识别和生成幽默成为自然语言处理领域热门的研究内容之一,并逐渐形成一个新兴研究领域:幽默计算。幽默计算致力于利用自然语言处理技术理解和识别包含幽默的文本表达,挖掘幽默表达潜在的语义内涵,构建面向幽默表达的计算模型。首先对当前幽默计算的背景进行概述,阐明幽默的可计算性和幽默计算对于人工智能的意义;在此基础上,对幽默研究的发展情况进行回顾,给出幽默研究的语言学基础;然后综述当前幽默计算在幽默识别和幽默生成两个方面的进展情况,分别给出针对幽默识别和幽默生成的计算框架;最后,对幽默计算在聊天机器人、机器翻译、儿童教育软件和外语教学等多个自然语言处理任务中的应用前景和应用模式进行展望。希望通过对幽默计算及其应用研究的总结和概述,完善现有幽默计算模型,增进计算机对于自然语言的理解,推动人工智能的进一步发展。

关键词: 自然语言理解, 幽默计算, 幽默生成, 人工智能, 幽默识别

Abstract: Humor, as a special phenomenon of human communications, can warm up the atmosphere and eliminate embarrassment. In recent years, with the research development of artificial intelligence, research area related to how to model humorous expression using computers becomes a hot topic in natural language processing tasks, and evolves to become a new subject, called computational humor. Computational humor aims to recognize and interpret humorous expressions in context using natural language processing technologies, and construct humor based computational models. In this article, we firstly introduce the backgrounds of computational humor research and detail the reasons for which humor can be modeled using computers. After that, we review related research in two lines, humor recognition and humor generation, and give the computational procedure of them respectively. Finally, we introduce some applications of humor computing in different tasks, including chatting robots, machine translation, children teaching software and English teaching. Overall, we review the recent research work in the area of humor computing to motivate new ideas and broaden horizons for further research in this area, which can help computers understand the natural language of humans, and promote the development of artificial intelligence.

Key words: computational humor, humor recognition, humor generation, artificial intelligence, natural language understanding

中图分类号: 

  • TP391
[1] 弗洛伊德. 机智及其与无意识的关系[M]. 上海: 上海社会科学院出版社, 1989. FREUD. Wit and unconscious relationship[M]. Shanghai: Shanghai Academy of Social Sciences Press, 1989.
[2] HOBBES T. Human nature in English works[M]. Molesworth: Scientia Verlag, 1840.
[3] 林语堂. 幽默人生[M]. 西安: 陕西师范大学出版社, 2002. LIN Yutang. Humor life[M]. Xian: Shaanxi Normal University Press, 2002.
[4] ATTARDO S. Linguistic theories of humor[J]. Language, 1996, 72(72):45-64.
[5] KUIPERS G. Good humor, bad taste: a sociology of the joke[M]. Berlin: Mouton de Gruyter, 2006.
[6] STRAPPARAVA C, STOCK O, MIHALCEA R. Computational humour[J]. Emotion-Oriented Systems(Cognitive Technologies Series), 2011, 21(2):609-634.
[7] RITCHIE G. Can computers create humor?[J]. AI Maagazine, 2009, 30(3):71-81.
[8] SPENCER H. The physiology of laughter[M]. London: Williams and Norgate, 1970.
[9] SCHOPENHAUER A, KEMP J. The world as will and idea[M]. New York: General Books LLC, 2009.
[10] DUNCAN W J. Perceived humor and social network patterns in a sample of task-oriented groups: a reexamination of prior research[J]. Human Relations, 1984, 37(11):895-907.
[11] YUILL N. A funny thing happened on the way to the classroom: jokes, riddles, and metalinguistic awareness in understanding and improving poor comprehension in children[J]. C Cornoldi and J Oakhill Reading, 1997.
[12] WATSON K K, MATTHEWS B J, ALLMAN J M. Brain activation during sight gags and language-dependent humor[J]. Cerebral Cortex, 2007, 17(2):314-324.
[13] RASKIN V. Semantic mechanisms of humor[J]. Reidel Dordrecht, 1985, 5(4):409-415.
[14] ATTARDO S, RASKIN V. Script theory revis(it)ed: joke similarity and joke representation model[J]. Humor-International Journal of Humor Research, 1991, 4(3):293-348.
[15] RASKIN V. The sense of humor and the truth: the Sense of humor explorations of a personality characteristic [J]. Medicina Et Pharmacologia Experimentalis International Journal of Experimental Medicine, 2007, 14(4):395-400
[16] MIHALCEA R, PULMAN S. Characterizing humour: an exploration of features in humorous texts[C] // Proceedings of International Conference on Computational Linguistics and Intelligent Text Processing. Berlin: Springer, 2009: 337-347.
[17] PURANDARE A, LITMAN D. Humor: prosody analysis and automatic recognition for F*R*I*E*N*D*S*[C] // Proceedings of Conference on Empirical Methods in Natural Language Processing. New York: ACM, 2006: 208-215.
[18] MIHALCEA R, STRAPPARAVA C, PULMAN S. Computational models for incongruity detection in humour[C] // Proceedings of International Conference on Computational Linguistics and Intelligent Text Processing. Berlin: Springer, 2010: 471-478.
[19] BINSTED K. Machine humour: an implemented model of puns[D]. Edinburgh: University of Edinburgh, 1996.
[20] TAYLOR J, MAZLACK L. Computationally recognizing wordplay in jokes[J]. Proceedings of CogSci, 2004, 53(1):1315-1320.
[21] KIDDON C, BRUN Y. That's what she said: double entendre identification[C] // Proceedings of Meeting of the Association for Computational Linguistics: Human Language Technologies. New York: ACM, 2011:89-94.
[22] REYES A, ROSSO P, BUSCALDI D. From humor recognition to irony detection: the figurative language of social media[J]. Data and Knowledge Engineering, 2012, 74(5):1-12.
[23] KAO J T, LEVY R, GOODMAN N D. A computational model of linguistic humor in puns[J]. Cognitive Science, 2015:1-16. Doi: 10.1111/cogs.12269.
[24] ATTARDO S. Linguistic theories of humor[J]. Language, 1996, 72(72):45-64.
[25] RAZ Y. Automatic humor classification on Twitter[C] // Proceedings of Conference on the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. New York: ACM, 2012: 66-70.
[26] YANG D, LAVIE A, DYER C, et al. Humor recognition and humor anchor extraction[C] // Proceedings of Conference on Empirical Methods in Natural Language Processing. New York: ACM, 2015: 2367-2376.
[27] KIDDON C, BRUN Y. Thats what she said: double entendre identification[C] // Proceedings of the Association for Computational Linguistics: Human Language Technologies. New York: ACM, 2011: 89-94.
[28] MIHALCEA R, STRAPPARAVA C. Making computers laugh: investigations in automatic humor recognition[C] // Proceedings of the Conference on Human Language Technology Conference and Empirical Methods in Natural Language Processing. New York: ACM, 2005: 531-538.
[29] ZHANG R, LIU N. Recognizing humor on twitter[C] // Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. New York: ACM, 2014: 889-898.
[30] JONES M T, GILLHAM B, ALTAHER A, et al. Computationally recognizing wordplay in jokes[J]. Proceedings of Cogsci, 2004, 53(1):1315-1320.
[31] TAYLOR J M. Computational detection of humor: a dream or a nightmare? the ontological semantics approach[C] // Proceedings of Conference on Web Intelligence and Intelligent Agent Technology. LOS Alamitos: IEEE Computer Society, 2009, 3:429-432.
[32] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[J]. Advances in Neural Information Processing Systems, 2013, 26:3111-3119.
[33] BUCARIA C, BUCARIA C. Lexical and syntactic ambiguity as a source of humor[J]. Humor, 2004,17(3):279-309.
[34] LESSARD G, LEVISON M. Computational modelling of linguistic humour: tom swifties[C] // Proceedings of ALLC/ACH Joint Annual Conference. Oxford: [s.n.] , 1992: 175-178.
[35] BINSTED K, RITCHIE G. Computational rules for generating punning riddles[J]. Humor, 1997, 10(1):25-76.
[36] VENOUR C. The computational generation of a class of pun[D]. Kingston: Queens University, 2000.
[37] STOCK O, STRAPPARAVA C. The act of creating humorous acronyms[J]. Applied Artificial Intelligence, 2005, 19(2):137-151.
[38] STOCK O, STRAPPARAVA C, STOCK O, et al. HAHAcronym: humorous agents for humorous acronyms[J]. Humor, 2003, 16(3):297-314.
[39] BINSTED K, BERGEN B, MCKAY J. Pun and non-pun humor in second-language learning [EB/OL].[2016-03-15]. http://www2.hawaii.edu/~binsted/papers/BinstedBergenMcKayCHI2003.pdf.
[40] STARK J, BINSTED K, BERGEN B. Disjunctor selection for one-line jokes[C] // Proceedings of International Conference on Intelligent Technologies for Interactive Entertainment. Berlin: Springer-Verlag, 2005: 174-182.
[41] TINHOLT H W, NIJHOLT A. Computational humour: utilizing cross-reference ambiguity for conversational jokes[C] // Proceedings of International Workshop on Fuzzy Logic and Applications: Applications of Fuzzy Sets Theory. Berlin: Springer-Verlag, 2007: 477-483.
[42] 徐琳宏, 林鸿飞, 潘宇,等. 情感词汇本体的构造[J]. 情报学报, 2008, 27(2):180-185. XU Linhong, LIN Hongfei, PAN Yu, et al. Construction of ontology emotional vocabulary[J]. Journal of Information Science, 2008, 27(2):180-185.
[43] 张冬瑜, 杨亮, 郑朴琪,等. 情感隐喻语料库构建与应用[J]. 中国科学:信息科学, 2015, 45(12):1574-1587. ZHANG Dongyu, YANG Liang, ZHENG Puqi, et al. Construction and application of emotion metaphor corpus[J]. Science in China: Information Science, 2015, 45(12):1574-1587.
[44] 徐琳宏, 林鸿飞. 认知视角下的文本情感计算[J]. 计算机科学, 2010, 37(12):182-185. XU Linhong, LIN Hongfei. The calculation of text sentiment in the cognitive perspective[J]. Computer Science, 2010, 37(12):182-185.
[1] 龚双双,陈钰枫,徐金安,张玉洁. 基于网络文本的汉语多词表达抽取方法[J]. 山东大学学报(理学版), 2018, 53(9): 40-48.
[2] 余传明,左宇恒,郭亚静,安璐. 基于复合主题演化模型的作者研究兴趣动态发现[J]. 山东大学学报(理学版), 2018, 53(9): 23-34.
[3] 严倩,王礼敏,李寿山,周国栋. 结合新闻和评论文本的读者情绪分类方法[J]. 山东大学学报(理学版), 2018, 53(9): 35-39.
[4] 原伟,唐亮,易绵竹. 基于本体的俄文新闻话题检测设计与实现[J]. 山东大学学报(理学版), 2018, 53(9): 49-54.
[5] 廖祥文,张凌鹰,魏晶晶,桂林,程学旗,陈国龙. 融合时间特征的社交媒介用户影响力分析[J]. 山东大学学报(理学版), 2018, 53(3): 1-12.
[6] 余传明,冯博琳,田鑫,安璐. 基于深度表示学习的多语言文本情感分析[J]. 山东大学学报(理学版), 2018, 53(3): 13-23.
[7] 张军,李竞飞,张瑞,阮兴茂,张烁. 基于网络有效阻抗的社区发现算法[J]. 山东大学学报(理学版), 2018, 53(3): 24-29.
[8] 庞博,刘远超. 融合pointwise及深度学习方法的篇章排序[J]. 山东大学学报(理学版), 2018, 53(3): 30-35.
[9] 陈鑫,薛云,卢昕,李万理,赵洪雅,胡晓晖. 基于保序子矩阵和频繁序列模式挖掘的文本情感特征提取方法[J]. 山东大学学报(理学版), 2018, 53(3): 36-45.
[10] 王彤,马延周,易绵竹. 基于DTW的俄语短指令语音识别[J]. 山东大学学报(理学版), 2017, 52(11): 29-36.
[11] 张晓东,董唯光,汤旻安,郭俊锋,梁金平. 压缩感知中基于广义Jaccard系数的gOMP重构算法[J]. 山东大学学报(理学版), 2017, 52(11): 23-28.
[12] 孙建东,顾秀森,李彦,徐蔚然. 基于COAE2016数据集的中文实体关系抽取算法研究[J]. 山东大学学报(理学版), 2017, 52(9): 7-12.
[13] 王凯,洪宇,邱盈盈,王剑,姚建民,周国栋. 一种查询意图边界检测方法研究[J]. 山东大学学报(理学版), 2017, 52(9): 13-18.
[14] 张帆,罗成,刘奕群,张敏,马少平. 异质搜索环境下的用户偏好性预测方法研究[J]. 山东大学学报(理学版), 2017, 52(9): 26-34.
[15] 杨艳,徐冰,杨沐昀,赵晶晶. 一种基于联合深度学习模型的情感分类方法[J]. 山东大学学报(理学版), 2017, 52(9): 19-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!