山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (6): 105-110.doi: 10.6040/j.issn.1671-9352.0.2016.318
• • 上一篇
谢淑翠1,邵爱霞2,张建中2*
XIE Shu-cui1, SHAO Ai-xia2, ZHANG Jian-zhong2*
摘要: 基于可控的量子隐形传态,提出一个以四粒子cluster态为量子信道的量子多重代理盲签名方案。首先代理签名人Uj对他拥有的粒子进行Bell基测量,产生代理申请;然后原始签名Charlie对自己的粒子进行Bell基测量来授权Uj进行签名;最后验证者Bob进行相应的幺正变换验证签名。与已有的方案相比,此方案只需四粒子cluster态为量子信道,可以较少的资源和更大的安全性完成量子多重代理盲签名。安全性分析表明该方案满足不可伪造性、不可否认性、盲性以及无条件安全性。
中图分类号:
[1] CHAUM D. Blind signature for untraceable payments[J]. Advances in Cryptology Proceedings of Crypto'82. New York: Henum Press, 1983: 199-203. [2] MAMBO M, USUDA K, OKAMOTO E. Proxy signatures: delegation of the power to sign messages[J]. IEICE Transactions on Fundamentals of Electronics, Communication and Computer Sciences E79-A(9), 1996: 1338-1351. [3] SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[J]. Symposium on Foundations of Computer Science, 1994: 124-134. [4] GOTTESMAN D, CHUANG I. Quantum digital signatures[DB/OL].(2001-05-08)[2016-02-15]. arXiv: quant-ph/0105032. [5] LEE H, HONG C, KIM H, et al. Arbitrated quantum signature scheme with message recovery[J]. Physics Letters A, 2004, 321(5-6):295-300. [6] WEN Xiaojun, LIU Yun, ZHANG Pengyun. Digital multi-signature protocol based on teleportation[J]. Wuhan University Journal of Natural Sciences, 2007, 12(1):029-032. [7] WEN Xiaojun, LIU Yun, ZHOU Nanrun. Secure quantum telephone[J]. Optics Communication, 2007, 275:278-282. [8] WANG Tianyin, WEI Zongli. One-time proxy signature based on quantum cryptography[J]. Quantum Information Processing, 2012, 11(2):455-463. [9] ZHANG Kejia, ZHANG Weiwei, LI Dan. Improving the security of arbitrated quantum signature against the forgery attack[J]. Quantum Information Processing, 2013, 12(8):2655-2699. [10] ZOU Xiangfu, QIU Daowen. Attack and improvements of fair quantum blind signature schemes[J]. Quantum Information Processing, 2013, 12(6):2071-2085. [11] WANG Tianyin, CAI Xiaoqiu.Security of a sessional blind signature based on quantum cryptograph[J]. Quantum Information Processing, 2014, 13(8):1677-1685. [12] WANG Tianyin, CAI Xiaoqiu, REN Yanli, et al. Security of quantum digital signatures for classic messages[J]. Scientific Reports, 2015, 5:9231. [13] BARNUM H, PEAU C, GOTTESMAN D, et al. Authentication of quantum messages[J]. Computer Science, 2002, 364(9438):449-458. [14] HARN L. New digital signature scheme based on logarithm[J].Electron Letters,1994, 30(5):396-398. [15] WEN Xiaojun, LIU Yun, SUN Yu. Quantum multi-signature protocol based on teleportation[J]. Zeitschrift Fur Naturforschung A, 2014, 62(62):147-151. [16] ZUO Huijuan, ZHANG Kejia, SONG Tingting. Security analysis of quantum multi-signature proto-col based on teleportation[J]. Quantum Information Processing, 2013, 12(7):2343-2353. [17] TIAN Yuan, CHEN Hong, JI Shufan, et al. A broadcasting multiple blind signature scheme based on quantum teleportation[J]. Optical & Quantum Electronics, 2013, 46(6):769-777. [18] CAO Haijing, WANG Huaisheng, LI Pengfei. Quantum proxy multi-signature scheme using genuine entangled six qubits state[J]. International Journal of theoretical Physics, 2013, 52(4):1188-119. [19] CAO Haijing, HUANG Jun, YU Yaofeng, et al. A quantum proxy signature scheme based on genuine five-qubit entangled state[J]. International Journal of theoretical Physics, 2014,53(9):3095-3100. [20] CAO Haijing, ZHANG Jiafu, LIU Jian. A new quantum proxy multi-signature scheme using maximally entangled seven-qubit states[J]. International Journal of theoretical Physics, 2016, 55:1-7. [21] TIAN Juanhong, ZHANG Jianzhong, LI Yanping. A quantum multi-proxy blind signature scheme based on genuine four-qubit entangled State[J]. International Journal of theoretical Physics, 2015, 55(2): 1-8. [22] LI Dong, XIU Xiaoming, GAO Yajun, et al. Controlled three-party communication using GHZ-like state and imperfect bell-state measurement[J]. Optics Communication, 2011, 284(3): 905-908. [23] SHOR P W, PRESKILL J. Simple proof of security of the BB84 quantum key distribution protoc-ol[J]. Physical Review Letters, 2000, 85(2):441-444. [24] MAYERS D. Unconditional security in quantum cryptography[J]. Journal of ACM, 1998, 48(3):351-406. [25] INAMORI H, LUTKENHAUS N, MAYERS D. Unconditional security of practical quantum key distribution[J]. European Physical Journal D, 2004, 41(3):599-627. |
[1] | 李昂,关杰. 一类轻量级最优S盒的构造方法[J]. 山东大学学报(理学版), 2018, 53(7): 85-94. |
[2] | 程璐,魏悦川,李安辉,潘晓中. Midori算法的多维零相关线性分析[J]. 山东大学学报(理学版), 2018, 53(2): 88-94. |
[3] | 刘鸽,刘青青,张建中. 基于量子测量的随机数提取机制[J]. 山东大学学报(理学版), 2017, 52(11): 44-48. |
[4] | 王威力,胡斌,赵秀凤. 一种高效的多身份全同态加密方案[J]. 山东大学学报(理学版), 2017, 52(5): 85-94. |
[5] | 张军琪,高海英. 在线/离线非单调CP-ABE方案构造[J]. 山东大学学报(理学版), 2016, 51(12): 78-86. |
[6] | 王国辉, 杜小妮, 万韫琦, 李芝霞. 周期为pq的平衡四元广义分圆序列的线性复杂度[J]. 山东大学学报(理学版), 2016, 51(9): 145-150. |
[7] | 孙天锋,胡斌. 最大代数免疫阶弹性函数的构造[J]. 山东大学学报(理学版), 2016, 51(5): 106-113. |
[8] | 殷勍,王念平. Piccolo结构抵抗差分和线性密码分析能力评估[J]. 山东大学学报(理学版), 2016, 51(3): 132-142. |
[9] | 卓泽朋, 崇金凤, 魏仕民. bent-negabent函数的构造[J]. 山东大学学报(理学版), 2015, 50(10): 47-51. |
[10] | 董向忠, 关杰. SIMON类算法轮函数的线性性质[J]. 山东大学学报(理学版), 2015, 50(09): 49-54. |
[11] | 王锦玲 兰娟丽. GF(q)上一类新型的广义自缩序列[J]. J4, 2009, 44(10): 91-96. |
[12] | 张立江,王 薇,魏普文 . 基于Weil对的(1, t)加密方案[J]. J4, 2007, 42(10): 9-12 . |
[13] | 王锦玲,刘宗成 . 主控生成器[J]. J4, 2008, 43(1): 81-87 . |
[14] | 于静之,张文英,刘祥忠 . 根据连续2n-1个状态写出单圈T函数ANF的方法[J]. J4, 2007, 42(4): 14-18 . |
[15] | 卓泽朋,崇金凤,魏仕民. Nega-Hadamard变换和negabent 函数[J]. J4, 2013, 48(7): 29-32. |
|