您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (8): 53-57.doi: 10.6040/j.issn.1671-9352.0.2016.576

• • 上一篇    下一篇

更新几何过程的参数估计

梁小林,郭敏,李静   

  1. 长沙理工大学数学与统计学院, 湖南 长沙 410114
  • 收稿日期:2016-12-05 出版日期:2017-08-20 发布日期:2017-08-03
  • 作者简介:梁小林(1965— ),男,博士,副教授,研究方向为可靠性理论与应用统计. E-mail:lxlin1234@126.com
  • 基金资助:
    湖南省教育厅重点项目资助(17A003)

Parametric estimations for renewal-geometric process

LIANG Xiao-lin, GUO Min, LI Jing   

  1. School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410114, Hunan, China
  • Received:2016-12-05 Online:2017-08-20 Published:2017-08-03

摘要: 根据更新几何过程的定义和性质,通过交叉验证变点检测和改进的最小二乘方法得到了其参数估计,并进行了数值模拟,模拟结果表明该方法是有效的。

关键词: 最小二乘法, 参数估计, 更新几何过程, 交叉验证, 变点检测

Abstract: According to the definition and the properties of renewal-geometric process, we get the parametric estimation of renewal-geometric process by Change-points detection via cross-validation and the improved least-squares method. Some simulation experiments are performed, and the simulation results show that the proposed method is effective.

Key words: parametric estimation, change-points detection, renewal-geometric process, cross-validation, least-squares method

中图分类号: 

  • O212
[1] LAM Y. Geometric processes and replacement problem[J]. Acta Mathematicae Applicatae Sinica, 1988, 4(4):366-377.
[2] LAM Y, CHAN S K. Statistical inference for geometric processes with lognormal distribution[J]. Computational Statistics & Data Analysis, 1998, 27(1):99-112.
[3] LAM Y. Nonparametric inference for geometric processes[J]. Communication in Statistics-Theory and Methods, 2007, 21(7):2083-2105.
[4] 梁小林, 牛彩云, 田学. 更新几何过程及相关性质[J]. 应用概率统计,2015, 31(4):384-394. LIANG Xiaolin, NIU Caiyun, TIAN Xue.The renewal-geometric process and its properties[J]. Application of Probability and Statistics, 2015, 31(4):384-394.
[5] NIU Caiyun, LIANG Xiaolin, GE Bingfeng, et al. Optimal replacement policy for a repairable system with deterioration based on a renewal-geometric process[J]. Annals of Operations Research, 2016, 244(1):49-66.
[6] 牛彩云. 更新几何过程及几类维修策略问题的研究[D]. 长沙:长沙理工大学, 2014. NIU Caiyun. The researches in renewal-geometric process and maintenance policies problems[D]. Changsha: Changsha University of Science and Technology, 2014.
[7] VEXLER A,GUREVICH G. Entropy-based empirical likelihood ratio change point detection policies[C] // JSM Proceedings Section on Nonparametric Statistics. Alexandria VA: American Statistical Association, 2009: 3986-3998.
[8] ROBINS J, ROTNITZKY A. A semiparametric changepoint model[J]. Biometrika,2004, 91:849-862.
[9] BARRY D, HARTIGAN JA. A bayesian analysis for change point problems[J]. Journal of the American Statistical Association, 1993, 88(421):309-319.
[10] WANG Zhanfeng, WU Yaohua, ZHAO Lincheng. Change-point estimation for censored regression model[J]. Science in China Series A: Mathematics, 2007, 50:63-72.
[11] SRIVASTAVA M S, WORSLEY K J. Likelihood ratio tests for a change in the multivariate normal mean[J]. Journal of the American Statistical Association, 1986, 81(393):199-204.
[12] BAI J. Least squares estimation of a shift in linear processes[J]. Journal of Time Series Analysis, 1994, 15:453-472.
[13] CELISSE A. Model selection via cross-validation in density estimation, regression, and change-points detection[D]. Paris: University Paris, 2008: 48-68.
[1] 康海燕,黄渝轩,陈楚翘. 基于视频分析的地理信息隐私保护方法[J]. 山东大学学报(理学版), 2018, 53(1): 19-29.
[2] 李辉,冯四风. 基于粒子滤波参数估计的混沌保密通信系统[J]. J4, 2011, 46(9): 1-4.
[3] . 基于移相法的三维面型测量系统优化算法研究[J]. J4, 2009, 44(6): 40-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!