您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (8): 107-110.doi: 10.6040/j.issn.1671-9352.0.2016.582

• • 上一篇    

Yetter-Drinfeld模范畴上 AMHH的弱基本定理

陈华喜1, 许庆兵2   

  1. 1. 蚌埠学院数学与物理系, 安徽 蚌埠 233000;2. 滁州职业技术学院基础部, 安徽 滁州 23900
  • 收稿日期:2016-12-15 出版日期:2017-08-20 发布日期:2017-08-03
  • 作者简介:陈华喜(1977— ),男,硕士,副教授,研究方向为Hopf代数及其表示理论.E-mail:bbchx7@163.com
  • 基金资助:
    国家自然科学青年基金资助项目(11101128);安徽省高校优秀青年人才支持计划重点项目(gxyqZD2016353);安徽省教育厅重点研究项目(KJ2016A545);蚌埠学院自然科学基金重点项目(2014ZR01zd)

The fundamental theorem forAMHH in Yetter-Drinfeld module categories

CHEN Hua-xi1, XU Qing-bing2   

  1. 1. Department of Mathematics and Physics, Bengbu College, Bengbu 233000, Anhui, China;
    2. Department of Basic course, Chuzhou Vocational and Technical Colege, Chuzhou 239000, Anhui, China
  • Received:2016-12-15 Online:2017-08-20 Published:2017-08-03

摘要: 引入了模范畴中弱Hopf代数和弱余模代数的概念,得到了Yetter-Drinfeld模范畴中AMHH 的弱基本定理

关键词: 弱余模代数, 弱Hopf代数, Yetter-Drinfeld模范畴

Abstract: The definitions of weak Hopf algebra and weak comodule algebras in Yetter-Drinfeld module categories are introduced, and the fundamental theorem forAMHH in Yetter-Drinfeld module categories is obtained.

Key words: weak comodule algebra, Yetter-Drinfeld module category, weak Hopf algebra

中图分类号: 

  • O153.3
[1] BÖHM G, NILL F, SZLACHÁNYI K. Weak Hopf algebras: Ⅰ. integral theory and C*-structure[J]. J Algebra,1999, 221(2):385-438.
[2] ZHANG L Y. ZHU S L. Fundamental theorems of weak Doi—Hopf modules and semisimple weak smash product Hopf algebras[J]. Comm Algebra, 2004, 32(9):3403-3415.
[3] CAENEPEEL S, WANG D G, YIN Y M. Yetter-Drinfeld modules over weak Hopf algebras[J]. Ann Univ Ferrara, 2005, 51(1):69-98.
[4] DOI Y. Hopf modules in Yetter-Drinfeld category[J]. Comm Algebra, 1998, 26(9): 3057-3070.
[5] MONTGOMERY S. Hopf algebras and their actions on rings[M]. Providence, Rhode Island: Amer Math Soc, 1993.
[6] HAYASHI T. Quantum group symmetry of partition functions of IRF models and its applications to Joness index theory[J]. Comm Math Phys, 1993, 157:331-345.
[7] NIKSHYCH D, Vainerman L. Finite quantum groupoids and their applications[J]. Math Sci Res Inst Publ, 2002, 43:211-262.
[8] NIKSHYCH D. A duality theorem for quantum groupoids[J]. Contemp Math, 2000, 267:237-243.
[9] YAMANOUCHI T. Duality for generalized Kac algebras and a characteriztion of finite groupoid algebras[J]. J Algebra, 1994, 163:9-50.
[1] 董丽红1,2,郭双建1. Yetter-Drinfeld模范畴上的弱Hopf模基本定理[J]. J4, 2013, 48(2): 20-22.
[2] 陈华喜1,张晓辉2,许庆兵3. Yetter-Drinfeld模范畴上的弱余模代数结构定理[J]. J4, 2013, 48(12): 14-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!