您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (9): 54-58.doi: 10.6040/j.issn.1671-9352.0.2016.613

• • 上一篇    下一篇

Calderón-Zygmund 算子和分数次积分的交换子在齐型极大变指标 Lebesgue 空间上的有界性

陆强德, 陶双平*   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 收稿日期:2016-11-25 出版日期:2017-09-20 发布日期:2017-09-15
  • 通讯作者: 陶双平(1964— ), 男, 教授, 研究方向为调和分析及其在色散方程中应用的研究. E-mail: taosp@nwnu.edu.cn E-mail:luqiangde0101@126.com
  • 作者简介:陆强德(1991— ), 男, 硕士研究生, 研究方向为调和分析. E-mail: luqiangde0101@126.com
  • 基金资助:
    国家自然科学基金资助项目(11561062;11661061;11601434)

Boundedness of commutators of Calderón-Zygmund operators and fractional integrals in homogeneous grand variable exponent Lebesgue spaces

LU Qiang-de, TAO Shuang-ping*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Guansu, China
  • Received:2016-11-25 Online:2017-09-20 Published:2017-09-15

摘要: 利用Sharp极大函数估计, 得到了Calderón-Zygmund算子和分数次积分的交换子在一类新的齐型极大变指标 Lebesgue空间Lp(·),θ(X)(~overL)p(·),θ(X)上的有界性。

关键词: Calderón-Zygmund算子, 分数次积分, 交换子, 齐型极大变指标Lebesgue空间

Abstract: By applying the estimates of the sharp maximal functions. It is proved that the commutators of the Calderón-Zygmund operator and the fractional integral are bounded on a new class of the homogeneous grand variable exponent Lebesgue spaces Lp(·),θ(X) and(~overL)p(·),θ(X), respectively.

Key words: Calderón-Zygmund operator, fractional operator, homogeneous grand variable exponent Lebesgue space, commutator

中图分类号: 

  • O174.2
[1] COIFMAN R R, WEISS G. Analyse harmonique non-commutative sur certain espaces homogenes[M]. Lecture Notes in Mathematics 242. Berlin-New York: Springer-Verlag, 1971.
[2] FAN Dashan, LU Shanzhen, YANG Dachun. Boundedness of operators in Morrey spaces on homogeneous spaces and its applications[J]. Acta Math Sin, Chin Ser, 1997, 42(4):583-590.
[3] PRADOLINI G, SALINAS O. Commutators of singular integrals on spaces of homogeneous type[J]. Czechoslovak Math J, 2007, 57(132):75-93.
[4] BRAMANTI M, CERUTTI M C. Commutators of singular integrals and fractional integrals on homogeneous spaces[J]. Harmonic Analysis and Operator Theory, Contemp Math, 1995, 189:81-94.
[5] BERNARDIS A, HARTZSTEIN S, PRADOLINI G. Weighted inequalities for commutators of fractional integral on spaces of homogeneous type[J]. Math Anal Appl, 2006, 322(1):825-846.
[6] 陶双平, 曹薇. 齐型空间上的弱Morrey-Herz 空间中一类线性算子交换子的有界性[J]. 数学杂志, 2011, 31(1):115-122. TAO Shuangping, CAO Wei. Boundeness of commutators for a class of sublinear operators in weak Morrey-Herz spaces on homogeneous spaces[J]. Journal of Math, 2011, 31(1):115-122.
[7] KOVÁCIK O, RÁKOSNÍK J. On spaces Lp(x) and Wk,p(x)[J]. Czechoslovak Math J, 1991, 41(116):592-618.
[8] HARJULEHTO P, HÄSTÖ P, PERE M. Variable exponent Lebesgue spaces on metric spaces: the Hardy-littlewood maximal operator[J]. Real Anal Exchange, 2004, 30(5):87-103.
[9] CRUZ-URIBE D, FIORENZA A, MARTELL J M. The boundedness of classical operatators on variable Lp spaces[J]. Ann Acad Sci Fenn Math, 2006, 31(1):239-264.
[10] WANG Lijuan, TAO Shuangping. Parameterized Littlewood-Paley operators and their commutators on Herz spaces with variable exponent[J]. Turkish J. Math, 2016, 40:122-145.
[11] WANG Lijuan, TAO Shuangping. Boundedness of Littlewood-Paley operators and their commutators on Herz-Morrey spaces with variable exponent[J]. J Inequal Appl, 2014, 2014:227.
[12] TAO Shuangping, WANG Lijuan. Littlewood-Paley operators on morrey spaces with variable exponent[J]. Scientific World Journal, 2014, 2014:790671.
[13] KOKILASHVILI V, MESKHI A. Maximal and Calderón-Zygmund operators in grand variable exponent Lebesgue spaces[J]. Georgian Math J, 2014, 21(4):447-461.
[1] 陶双平,高荣. 多线性分数次积分和极大算子在Morrey空间上的加权估计[J]. 山东大学学报(理学版), 2018, 53(6): 30-37.
[2] 赵欢,周疆. 变指数Herz型Hardy空间上的多线性Calderón-Zygmund算子交换子[J]. 山东大学学报(理学版), 2018, 53(10): 42-50.
[3] 姚俊卿,赵凯. 变指数Herz-Morrey空间上的分数次积分交换子[J]. 山东大学学报(理学版), 2017, 52(11): 100-105.
[4] 马小洁,赵凯. 分数次Hardy算子交换子在变指数空间的加权有界性[J]. 山东大学学报(理学版), 2017, 52(11): 106-110.
[5] 王杰,瞿萌,束立生. Littlewood-Paley算子及其交换子在变指数Herz空间上的有界性[J]. 山东大学学报(理学版), 2016, 51(4): 9-18.
[6] 王金苹,赵凯. 变指标Herz型空间上分数次积分的Lipschitz交换子[J]. 山东大学学报(理学版), 2016, 51(10): 6-10.
[7] 苟银霞, 陶双平, 戴惠萍. Herz型Hardy空间上粗糙核分数次积分及其交换子的加权估计[J]. 山东大学学报(理学版), 2014, 49(07): 80-87.
[8] 李浩静,陈峥立*,梁丽丽. 关于Schr-dinger不确定性关系的研究[J]. 山东大学学报(理学版), 2014, 49(06): 67-73.
[9] 赵凯,纪春静,黄智. 一类Marcinkiewicz积分交换子在Herz型Hardy空间中的有界性[J]. J4, 2013, 48(6): 1-4.
[10] 闫彦宗,邵旭馗,王素萍. 变量核的 Marcinkiewicz 高阶交换子在Hardy空间的有界性[J]. J4, 2013, 48(2): 67-71.
[11] 杜红珊,张蕾. 振荡积分算子交换子的Lipschitz估计*[J]. J4, 2012, 47(4): 80-83.
[12] 王立伟1,瞿萌2,范国良1. 齐次MorreyHerz空间中多线性交换子的中心BMO估计[J]. J4, 2012, 47(12): 82-87.
[13] 赵凯,董鹏娟,邵帅. 分数次积分算子交换子在λ-中心Morrey空间上的加权有界性[J]. J4, 2011, 46(12): 88-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!