山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (5): 41-48.doi: 10.6040/j.issn.1671-9352.0.2017.039
许忠好,李天奇
XU Zhong-hao, LI Tian-qi
摘要: 为分析中国股票市场统计特征,利用通过滑动时间窗口建立相关性网络序列,通过超度量矩阵、最小生成树和阈值法等方法转化相关性网络,建立相关性网络的统计特征序列,并分析各个统计特征间的关联与影响。研究结果表明,上证指数收益率对股票相关性网络的聚类系数有负效应,对平均最短路径有正效应,表明中国资本市场上升的动量具有分散化的特征;同时,相关性网络的聚类系数对网络同步性有正效应,平均最短路径则对网络同步性有负效应。
中图分类号:
[1] ONNELA J P, CHAKRABORTI A, KASKI K, et al. Dynamic asset trees and portfolio analysis[J]. The European Physical Journal B, 2002, 30(3):285-288. [2] JUNG W S, MOON H T, CHAE S, et al. Characteristics of the Korean stock market correlations[J]. Physical Statistical Mechanics & Its Applications, 2005, 361(1):263-271. [3] GARAS A, ARGYRAKIS P. Correlation study of the athens stock exchange[J]. Physical Statistical Mechanics & Its Applications, 2007, 380(7):399-410. [4] 黄飞雪, 谷静, 李延喜,等. 金融危机前后的全球主要股指联动与动态稳定性比较[J]. 系统工程理论与实践, 2010, 30(10):1729-1740. HUANG Feixue, GU Jing, LI Yanxi, et al. Before and after the financial crisis of the worlds main stock index linkage compared with dynamic stability[J]. Systems Engineering Theory and Practice, 2010, 30(10):1729-1740. [5] TABAK B M, SERRA T R, CAJUEIRO D O. Topological properties of stock market networks: the case of brazil[J]. Physical Statistical Mechanics & Its Applications, 2010, 389(16):3240-3249. [6] CHEONG S A, FORNIA R P, LEE G H T, et al. The Japanese economy in crises: a time series segmentation study[J]. SSRN Electronic Journal, 2012, 6(5):1-81. [7] BOGINSKI V, BUTENKO S, PARDALOS P M. Statistical analysis of financial networks[J]. Computational Statistics & Data Analysis, 2005, 48(2):431-443. [8] HUANG WQ, ZHUANG XT, YAO S. A network analysis of the Chinese stock market[J]. Physical Statistical Mechanics & Its Applications, 2009, 388(14):2956-2964. [9] 庄新田, 闵志锋, 陈师阳,等. 上海证券市场的复杂网络特性分析[J]. 东北大学学报(自然科学版), 2007, 28(7):1053-1056. ZHUANG Xintian, MIN Zhifeng, CHEN Shiyang, et al. Analysis of complex network characteristics of shanghai stock market[J]. Journal of Northeast University(Natural Science Edition), 2007, 28(7):1053-1056. [10] 兰旺森, 赵国浩. 应用复杂网络研究板块内股票的强相关性[J]. 中山大学学报(自然科学版), 2010, 49(s1):65-69. LAN Wansen, ZHAO Guohao. Application of complex network to study the strong correlation of stock in plate[J]. Journal of Sun Yat-Sen University(Natural Science Edition), 2010, 49(s1):65-69. [11] MCGRAW P N, MENZINGER M. Clustering and the synchronization of oscillator networks[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2005, 72(2):19-42. [12] WU Xiang, WANG Binghong, ZHOU Tao, et al. Synchronizability of highly clustered scale-free networks[J]. Chinese Physics Letters, 2005, 23(4):1046-1049. [13] DONETT I L, HURTADO P I, MUNOZ M A. Entangled networks, synchronization, and optimal network topology[J]. Physical Review Letters, 2005, 95(18):188701. [14] ZHAO M, ZHOU T, WANG B H, et al. Relations between average distance, heterogeneity and network synchronizability[J]. Physical Statistical Mechanics & Its Applications, 2006, 371(2):773-780. [15] MANTEGNA R N, STANLEY H E. An introduction to econophysics: correlations and complexity in finance[M]. Cambridge: Cambridge University Press, 1999. [16] PERON T K D, RODRIGUES F A. Collective behavior in financial market[J]. Quantitative Finance, 2011, 96(4):2510-2513. [17] WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684):440-442. [18] BARABASI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509-512. [19] LIU Xiaofan, CHI K TSE. A complex network perspective of world stock markets: synchronization and volatility[J]. International Journal of Bifurcation & Chaos, 2012, 22(6):223-225. |
No related articles found! |
|