您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (5): 41-48.doi: 10.6040/j.issn.1671-9352.0.2017.039

• • 上一篇    下一篇

基于复杂网络的中国股票市场统计特征分析

许忠好,李天奇   

  1. 华东师范大学统计学院, 上海 200241
  • 收稿日期:2017-02-10 出版日期:2017-05-20 发布日期:2017-05-15
  • 作者简介:许忠好(1980— ),男,博士,副教授,研究方向为随机图理论及其应用. E-mail:zhxu@sfs.ecnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11401216,11471120);高等学校学科创新引智计划资助(B14019);上海市自然科学基金资助项目(16ZR1409700)

Analysison statistical characteristic of Chinese stock market based on complex networks

XU Zhong-hao, LI Tian-qi   

  1. School of Statistics, East China Normal University, Shanghai 200241, China
  • Received:2017-02-10 Online:2017-05-20 Published:2017-05-15

摘要: 为分析中国股票市场统计特征,利用通过滑动时间窗口建立相关性网络序列,通过超度量矩阵、最小生成树和阈值法等方法转化相关性网络,建立相关性网络的统计特征序列,并分析各个统计特征间的关联与影响。研究结果表明,上证指数收益率对股票相关性网络的聚类系数有负效应,对平均最短路径有正效应,表明中国资本市场上升的动量具有分散化的特征;同时,相关性网络的聚类系数对网络同步性有正效应,平均最短路径则对网络同步性有负效应。

关键词: 网络同步性, 股票相关性, 聚类系数

Abstract: To analyze the statistical characteristic of Chinese stock market, we setting a series of time windows to construct dynamic correlation networks, through distance matrix, MST and threshold method to divert dynamic correlation networks and construct sequences of statistics of networks, and relations between each statistics are analyzed in this paper. According to the conclusion, the return of SSE Composite Index has negative effect on clustering coefficient and positive effect on average shortest path of correlation networks. Clustering coefficient of correlation network has positive effect on network synchronization while average shortest path has negative effect on network synchronization.

Key words: network synchronization, stock correlation, clustering coefficient

中图分类号: 

  • F832
[1] ONNELA J P, CHAKRABORTI A, KASKI K, et al. Dynamic asset trees and portfolio analysis[J]. The European Physical Journal B, 2002, 30(3):285-288.
[2] JUNG W S, MOON H T, CHAE S, et al. Characteristics of the Korean stock market correlations[J]. Physical Statistical Mechanics & Its Applications, 2005, 361(1):263-271.
[3] GARAS A, ARGYRAKIS P. Correlation study of the athens stock exchange[J]. Physical Statistical Mechanics & Its Applications, 2007, 380(7):399-410.
[4] 黄飞雪, 谷静, 李延喜,等. 金融危机前后的全球主要股指联动与动态稳定性比较[J]. 系统工程理论与实践, 2010, 30(10):1729-1740. HUANG Feixue, GU Jing, LI Yanxi, et al. Before and after the financial crisis of the worlds main stock index linkage compared with dynamic stability[J]. Systems Engineering Theory and Practice, 2010, 30(10):1729-1740.
[5] TABAK B M, SERRA T R, CAJUEIRO D O. Topological properties of stock market networks: the case of brazil[J]. Physical Statistical Mechanics & Its Applications, 2010, 389(16):3240-3249.
[6] CHEONG S A, FORNIA R P, LEE G H T, et al. The Japanese economy in crises: a time series segmentation study[J]. SSRN Electronic Journal, 2012, 6(5):1-81.
[7] BOGINSKI V, BUTENKO S, PARDALOS P M. Statistical analysis of financial networks[J]. Computational Statistics & Data Analysis, 2005, 48(2):431-443.
[8] HUANG WQ, ZHUANG XT, YAO S. A network analysis of the Chinese stock market[J]. Physical Statistical Mechanics & Its Applications, 2009, 388(14):2956-2964.
[9] 庄新田, 闵志锋, 陈师阳,等. 上海证券市场的复杂网络特性分析[J]. 东北大学学报(自然科学版), 2007, 28(7):1053-1056. ZHUANG Xintian, MIN Zhifeng, CHEN Shiyang, et al. Analysis of complex network characteristics of shanghai stock market[J]. Journal of Northeast University(Natural Science Edition), 2007, 28(7):1053-1056.
[10] 兰旺森, 赵国浩. 应用复杂网络研究板块内股票的强相关性[J]. 中山大学学报(自然科学版), 2010, 49(s1):65-69. LAN Wansen, ZHAO Guohao. Application of complex network to study the strong correlation of stock in plate[J]. Journal of Sun Yat-Sen University(Natural Science Edition), 2010, 49(s1):65-69.
[11] MCGRAW P N, MENZINGER M. Clustering and the synchronization of oscillator networks[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2005, 72(2):19-42.
[12] WU Xiang, WANG Binghong, ZHOU Tao, et al. Synchronizability of highly clustered scale-free networks[J]. Chinese Physics Letters, 2005, 23(4):1046-1049.
[13] DONETT I L, HURTADO P I, MUNOZ M A. Entangled networks, synchronization, and optimal network topology[J]. Physical Review Letters, 2005, 95(18):188701.
[14] ZHAO M, ZHOU T, WANG B H, et al. Relations between average distance, heterogeneity and network synchronizability[J]. Physical Statistical Mechanics & Its Applications, 2006, 371(2):773-780.
[15] MANTEGNA R N, STANLEY H E. An introduction to econophysics: correlations and complexity in finance[M]. Cambridge: Cambridge University Press, 1999.
[16] PERON T K D, RODRIGUES F A. Collective behavior in financial market[J]. Quantitative Finance, 2011, 96(4):2510-2513.
[17] WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684):440-442.
[18] BARABASI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509-512.
[19] LIU Xiaofan, CHI K TSE. A complex network perspective of world stock markets: synchronization and volatility[J]. International Journal of Bifurcation & Chaos, 2012, 22(6):223-225.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!