您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (7): 1-12.doi: 10.6040/j.issn.1671-9352.0.2017.279

• •    下一篇

形式概念分析的粒计算方法及其研究展望

李金海1,2,吴伟志3,4   

  1. 1.昆明理工大学数据科学研究中心, 云南 昆明 650500;2.昆明理工大学理学院, 云南 昆明 650500;3.浙江海洋大学数理与信息学院, 浙江 舟山 316022;4.浙江海洋大学浙江省海洋大数据挖掘与应用重点实验室, 浙江 舟山 316022
  • 收稿日期:2017-06-05 出版日期:2017-07-20 发布日期:2017-07-07
  • 作者简介:李金海(1984— ),男,博士,副教授,研究方向为粗糙集、概念格与粒计算. E-mail: jhlixjtu@163.com
  • 基金资助:
    国家自然科学基金资助项目(61562050,61305057,61573173,61573321,41631179);浙江省海洋大数据挖掘与应用重点实验室开放课题资助项目(OBDMA201502)

Granular computing approach for formal concept analysis and its research outlooks

LI Jin-hai1,2, WU Wei-zhi3,4   

  1. 1. Data Science Research Center, Kunming University of Science and Technology, Kunming 650500, Yunnan, China;
    2. Faculty of Science, Kunming University of Science and Technology, Kunming 650500, Yunnan, China;
    3. School of Mathematics, Physics and Information Science, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China;
    4. Key Laboratory of Oceanographic Big Data Mining and Application of Zhejiang Province, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
  • Received:2017-06-05 Online:2017-07-20 Published:2017-07-07

摘要: 形式概念分析是知识表示与处理的一种实用数学方法,因其核心工具概念格的构造代价涉及指数时间复杂度,它在一定程度上导致其处理数据效率不高,这个问题也一直阻碍着该理论的快速发展与广泛应用。粒计算以粒的形成、粒的转移、粒的合成与分解等手段有效解决问题而著称,它允许问题在各个粒化层面上得到处理,并根据实际需要在解决问题的精度与耗时之间做出权衡。形式概念分析的粒计算方法的主要研究目标是将粒计算的这些优势融入传统形式概念分析中以有效解决数据分析与处理问题。具体地,本文从Galois连接的粒计算模型、对象粒化、属性粒化、关系粒化、关系诱导的概念粒化、粒规则、粒约简、粒概念、粒概念学习、概念粒计算系统等角度展示形式概念分析的粒计算方法的主要研究内容,并针对大数据与认知学习提出若干挑战性问题。有关讨论结果将为形式概念分析的粒计算方法的研究与发展提供借鉴。

关键词: 粒计算, 认知学习, 大数据, 形式概念分析, 概念格

Abstract: Formal concept analysis is a useful mathematical method for knowledge representation and processing and its key tool is concept lattice. However, the construction of concept lattice takes exponential time complexity, which to some extent makes data processing inefficient and hinders fast development of this theory and its application. Granular computing is well-known for formation of granule, transformation of granule, and synthesis and decomposition of granule. Granular computing allows to consider problem by granularity in various levels, and strikes a balance between accuracy and time consuming in solving problem based on the practical requirements. The main research aim of granular computing approach for formal concept analysis is to incorporate these advantages of granular computing into traditional formal concept analysis for efficiently solving data analysis and processing. More specifically, this paper shows the main research topics of granular computing approach for formal concept analysis from the perspectives of Galois connection based granular computing model, object granule, attribute granule, relation granule, relation-based concept 山 东 大 学 学 报 (理 学 版)第52卷 - 第7期李金海,等:形式概念分析的粒计算方法及其研究展望 \=-granularity, granular rule, granular reduct, granular concept and learning, and concept granular computing systems. In addition, some challenging problems are also proposed for dealing with big data and cognitive learning. The obtained results will provide some references for the further study of granular computing approach of formal concept analysis.

Key words: formal concept analysis, concept lattice, cognitive learning, big data, granular computing

中图分类号: 

  • TP18
[1] WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts[C]. Ordered Sets, 1982: 445-470.
[2] GANTER B, WILLE R. Formal Concept Analysis: Mathematical Foundations[M]. New York: Springer, 1999.
[3] KUZNETSOV S O. Mathematical aspects of concept analysis[J]. Journal of Mathematical Science, 1996, 80(2): 1654-1698.
[4] GANTER B. Attribute exploration with background knowledge[J]. Theoretical Computer Science, 1999, 217(2): 215-233.
[5] GODIN R. Incremental concept formation algorithm based on Galois(concept)lattice[J]. Computational Intelligence, 1995, 11: 246-267.
[6] KUZNETSOV S O, OBIEDKOV S A. Comparing performance of algorithms for generating concept lattices[J]. Journal of Experimental and Theoretical Artificial Intelligence, 2002, 14(2-3): 189-216.
[7] BURUSCO A, FUENTES-GONZALEZ R. The study of the L-fuzzy concept lattice[J]. Mathware and Soft Computing, 1994, 3: 209-218.
[8] LEHMANN F, WILLE R. A triadic approach to formal concept analysis[C] //Proceedings of the Third International Conference on Conceptual Structures, 1995, 954: 32-43.
[9] CARPINETO C, ROMANO G. A lattice conceptual clustering system and its application to browsing retrieval[J]. Machine Learning, 1996, 10: 95-122.
[10] STUMME G, WILLE R, WILLE U. Conceptual knowledge discovery in databases using formal concept analysis methods[J]. Lecture Notes in Artificial Intelligence, 1998, 1510: 450-458.
[11] 胡可云, 陆玉昌, 石纯一. 概念格及其应用进展[J]. 清华大学学报(自然科学版), 2000, 40(9): 77-81. HU Keyun, LU Yuchang, SHI Chunyi. Advances in concept lattice and its application[J]. Journal of Tsinghua University(Science & Technology), 2000, 40(9): 77-81.
[12] 刘宗田, 强宇, 周文, 等.一种模糊概念格模型及其渐进式构造算法[J]. 计算机学报, 2007, 30(2): 184-188. LIU Zongtian, QIANG Yu, ZHOU Wen, et al. A fuzzy concept lattice model and its incremental construction algorithm[J]. Chinese Journal of Computers, 2007, 30(2): 184-188.
[13] 智慧来,智东杰,刘宗田. 概念格合并原理与算法[J]. 电子学报, 2010, 38(2): 455-459. ZHI Huilai, ZHI Dongjie, LIU Zongtian. Theory and algorithm of concept lattice union[J]. Acta Electronica Sinica, 2010, 38(2): 455-459.
[14] KRAJCA P, OUTRATA J, VYCHODIL V. Parallel algorithm for computing fixpoints of Galois connections[J]. Annals of Mathematics and Artificial Intelligence, 2010, 59(2): 257-272.
[15] 张卓, 杜鹃, 王黎明.基于负载均衡的模糊概念并行构造算法[J]. 控制与决策, 2014, 29(11): 1935-1942. ZHANG Zhuo, DU Juan, WANG Liming. Load balance-based algorithm for parallelly generating fuzzy formal concepts[J]. Control and Decision, 2014, 29(11): 1935-1942.
[16] ZOU Ligeng, ZHANG Zuping, LONG Jun. A fast incremental algorithm for constructing concept lattices[J]. Expert Systems with Applications, 2015, 42(9): 4474-4481.
[17] ZADEH L A.Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic[J]. Fuzzy Sets and Systems, 1997, 90(2): 111-127.
[18] YAO Yiyu. A partition model of granular computing[J]. Lecture Notes in Computer Science, 2004, 3100: 232-253.
[19] 苗夺谦,王国胤,刘清,等. 粒计算: 过去、现在与展望[M]. 北京: 科学出版社, 2007. MIAO Duoqian, WANG Guoyin, LIU Qing, et al. Granular computing: past, present and future[M]. Beijing: Science Press, 2007.
[20] KANG Xiangping, LI Deyu, WANG Suge, et al. Formal concept analysis based on fuzzy granularity base for different granulations[J]. Fuzzy Sets and Systems, 2012, 203: 33-48.
[21] GUO Lankun, Huang Fangping, LI Qingguo, et al. Power contexts and their concept lattices[J]. Discrete Mathematics, 2011, 311: 2049-2063.
[22] ASWANI KUMAR C, ISHWARYA M S, LOO C K. Formal concept analysis approach to cognitive functionalities of bidirectional associative memory[J]. Biologically Inspired Cognitive Architectures, 2015, 12: 20-33.
[23] MA Jianmin, ZHANG Wenxiu, LEUNG Yee, et al. Granular computing and dual Galois connection[J]. Information Sciences, 2007, 177(23): 5365-5377.
[24] DIAS S M, VIEIRA N J. Reducing the size of concept lattices: the JBOS approach[C] // Proceedings of the Seventh International Conference on Concept Lattices and their Applications, 2010: 60-69.
[25] QI Jianjun, WEI Ling, YAO Yiyu. Three-way formal concept analysis[J]. Lecture Notes in Computer Science, 2014, 8818: 732-741.
[26] LI Jinhai, HUANG Chenchen, QI Jianjun, et al. Three-way cognitive concept learning via multi-granularity[J]. Information Sciences, 2017, 378: 244-263.
[27] HU Baoqing. Three-way decisions space and three-way decisions[J]. Information Sciences, 2014, 281: 21-52.
[28] ZHANG Qinghua, XING Yuke. Formal concept analysis based on granular computing[J]. Journal of Computational Information Systems, 2010, 6(7): 2287-2296.
[29] BELOHLAVEK R, DE BAETS B, KONECNY J. Granularity of attributes in formal concept analysis[J]. Information Sciences, 2014, 260: 149-170.
[30] ASWANI KUMAR C, SRINIVAS S. Concept lattice reduction using fuzzy K-means clustering[J]. Expert Systems with Applications, 2010, 37(3): 2696-2704.
[31] DEOGUN J S, SAQUER J. Monotone concepts for formal concept analysis[J]. Discrete Applied Mathematics, 2004, 144(1-2): 70-78.
[32] WANG Lidong, LIU Xiaodong. Concept analysis via rough set and AFS algebra[J]. Information Sciences, 2008, 178(21): 4125-4137.
[33] KANG Xiangping, MIAO Duoqian. A variable precision rough set model based on the granularity of tolerance relation[J]. Knowledge-Based Systems, 2016, 102: 103-115.
[34] ELLOUMI S. A multi-level conceptual data reduction approach based on the Łukasiewicz implication[J]. Information Sciences, 2004, 163(4): 253-262.
[35] LI Lifeng, ZHANG Jianke. Attribute reduction in fuzzy concept lattices based on the T implication[J]. Knowledge-Based Systems, 2010, 23(6): 497-503.
[36] MA Yuan, LIU Zhangang, ZHANG Xuedong. Granular computing in formal concept[C] // Novel Developments in Granular Computing: Applications for Advanced Human Reasoning and Soft Computation, 2010: 370-407.
[37] 马垣, 曾子维, 迟呈英, 等. 形式概念及其新进展[M]. 北京: 科学出版社, 2011. MA Yuan, ZENG Ziwei, CHI Chengying, et al. Formal concept and its new progress[M]. Beijing: Science Press, 2011.
[38] WANG Lidong, LIU Xiaodong. A new model of evaluating concept similarity[J]. Knowledge-Based Systems, 2008, 21: 842-846.
[39] WU Weizhi, LEUNG Yee, MI Jusheng. Granular computing and knowledge reduction in formal contexts[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(10): 1461-1474.
[40] QU Kaishe, ZHAI Yanhui, LIANG Jiye, et al. Study of decision implications based on formal concept analysis[J]. International Journal of General Systems, 2007, 36(2): 147-156.
[41] 张文修, 仇国芳. 基于粗糙集的不确定决策[M]. 北京:清华大学出版社,2005. ZHANG Wenxiu, QIU Guofang. Uncertain decision making based on rough sets[M]. Beijing: Tsinghua University Press, 2005.
[42] LI Jinhai, MEI Changlin, LV Yuejin. Knowledge reduction in decision formal contexts[J]. Knowledge-Based Systems, 2011, 24(5): 709-715.
[43] LI Jinhai, MEI Changlin, ASWANI KUMAR C, et al. On rule acquisition in decision formal contexts[J]. International Journal of Machine Learning and Cybernetics, 2013, 4(6): 721-731.
[44] 翟岩慧,李德玉,曲开社. 决策蕴涵规范基[J]. 电子学报, 2015, 43(1): 18-23. ZHAI Yanhui, LI Deyu, QU Kaishe. Canonical basis for decision implications[J]. Acta Electronica Sinica, 2015, 43(1): 18-23.
[45] 聂翠平, 米据生, 郑凤彩. 概念格的外延覆盖约简[J]. 工程数学学报, 2009, 26(1): 8-16. NIE Cuiping, MI Jusheng, ZHENG Fengcai. Covering reduction of extents in concept lattices[J]. Chinese Journal of Engineering Mathematics, 2009, 26(1): 8-16.
[46] 张文修, 魏玲, 祁建军. 概念格的属性约简理论与方法[J]. 中国科学(信息科学), 2005, 35(6): 628-639. ZHANG Wenxiu, WEI Ling, QI Jianjun. Attribute reduction theory and approach to concept lattice[J]. Science China(Information Sciences), 2005, 35(6): 628-639.
[47] SHAO Mingwen, LEUNG Yee, WANG Xizhao, et al. Granular reducts of formal fuzzy contexts[J]. Knowledge-Based Systems, 2016, 114: 156-166.
[48] HUANG Chenchen, LI Jinhai, DIAS S M. Attribute significance, consistency measure and attribute reduction in formal concept analysis[J]. Neural Network World, 2016, 17(6): 607-623.
[49] 魏玲, 祁建军, 张文修. 决策形式背景的概念格属性约简[J]. 中国科学(信息科学), 2008, 38(2): 195-208. WEI Ling, QI Jianjun, ZHANG Wenxiu. Attribute reduction theory of concept lattice based on decision formal contexts[J]. Science China(Information Sciences), 2008, 38(2): 195-208.
[50] WANG Hong, ZHANG Wenxiu. Approaches to knowledge reduction in generalized consistent decision formal context[J]. Mathematical and Computer Modelling, 2008, 48(11-12): 1677-1684.
[51] LI Jinhai, MEI Changlin, LV Yuejin. A heuristic knowledge-reduction method for decision formal contexts[J]. Computers and Mathematics with Applications, 2011, 61(4): 1096-1106.
[52] LI Jinhai, ASWANI KUMAR C, MEI Changlin, et al. Comparison of reduction in formal decision contexts[J]. International Journal of Approximate Reasoning, 2017, 80: 100-122.
[53] LI Jinhai, MEI Changlin, XU Weihua, et al. Concept learning via granular computing: a cognitive viewpoint[J]. Information Sciences, 2015, 298: 447-467.
[54] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11: 341-356.
[55] WANG Ying. On concept algebra: A denotational mathematical structure for knowledge and sofrware modelling[J]. International Journal of Cognitive Informatics and Natural Intelligence, 2008, 2(2): 1-19.
[56] LAKE B M, SALAKHUTDINOV R, TENENBAUM J B. Human-level concept learning through probabilistic program induction[J]. Science, 2015, 350: 1332-1338.
[57] ANGLUIN D. Queries and concept learning[J]. Machine Learning,1988, 2: 319-342.
[58] 仇国芳, 马建敏, 杨宏志, 等. 概念粒计算系统的数学模型[J]. 中国科学(信息科学), 2009, 39(12): 1239-1247. QIU Guofang, MA Jianmin, YANG Hongzhi, et al. A mathematical model for concept granular computing systems[J]. Science China(Information Sciences), 2010, 53(7): 1397-1408.
[59] 张文修, 徐伟华. 基于粒计算的认知模型[J]. 工程数学学报, 2007, 24(6): 957-971. ZHANG Wenxiu, XU Weihua. Cognitive model based on granular computing[J]. Chinese Journal of Engineering Mathematics, 2007, 24(6): 957-971.
[60] XU Weihua, LI Wentao. Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets[J]. IEEE Transactions on Cybernetics, 2016, 46(2): 366-379.
[61] 张清华, 幸禹可, 王国胤. 概念知识粒与概念信息粒的相互转化[J]. 山东大学学报(理学版), 2010, 45(9): 1-6. ZHANG Qinghua, XING Yuke, WANG Guoyin. Transformation between a concept knowledge granule and a concept information granule[J]. Journal of Shandong University(Natural Science Edition), 2010, 45(9): 1-6.
[62] WANG Guoyin, Xu Changlin, LI Deyi. Generic normal cloud model[J]. Information Sciences, 2014, 280: 1-15.
[63] HUANG Chenchen, LI Jinhai, MEI Changlin, et al. Three-way concept learning based on cognitive operators: an information fusion viewpoint[J]. International Journal of Approximate Reasoning, 2017, 83: 218-242.
[64] WANG Ying, ZADEH L A, YAO Yiyu. On the system algebra foundations for granular computing[J]. International Journal of Software Science and Computational Intelligence, 2009, 1(1): 64-86.
[65] YAO Yiyu. Interpreting concept learning in cognitive informatics and granular computing[J]. IEEE Transactions on Systems, Man, and Cybernetics(Part B: Cybernetics), 2009, 39(4): 855-866.
[66] 李鸿. 基于粒集的概念粒系统[J]. 安徽大学学报(自然科学版), 2009, 33(6): 37-43. LI Hong. The concept granular system based on granular set[J]. Journal of Anhui University(Natural Science Edition), 2009, 33(6): 37-43.
[67] 张文修,魏玲,祁建军,等. 概念格约简泛化与概念粒逼近[C] // 苗夺谦, 王国胤, 刘清, 林早阳, 姚一豫. 粒计算:过去、现在与展望, 2007: 243-274. ZHANG Wenxiu, WEI Ling, QI Jianjun, et al. Concept lattice reduction generalization and concept granule approximation[C] // MIAO Duoqian, WANG Guoyin, LIU Qing, et al. Granular Computing: Past, Present and Future, 2007: 243-274.
[68] 刘宗田. 概念格与粒计算[C] // 苗夺谦, 王国胤, 刘清, 等. 粒计算:过去、现在与展望, 2007: 275-298. LIU Zongtian. Concept lattice and granular computing[C] // MIAO Duoqian, WANG Guoyin, LIU Qing, et al. Granular Computing: Past, Present and Future, 2007: 275-298.
[69] 闫林,张新明,何健仓,等. 粗糙集、商空间及概念格中粒的统一描述[J]. 计算机工程与应用, 2010, 46(9): 38-41. YAN Lin, ZHANG Xinming, HE Jiancang, et al. Uniform description for granules appearing in rough set, quotient space and concept lattice[J]. Computer Engineering and Applications, 2010, 46(9): 38-41.
[70] POELMANS J, KUZNETSOV S O, IGNATOV D I, et al. Formal concept analysis in knowledge processing: a survey on models and techniques[J]. Expert Systems with Applications, 2013, 40(16): 6601-6623.
[71] POELMANS J, IGNATOV D I, KUZNETSOV S O, et al. Formal concept analysis in knowledge processing: a survey on applications[J]. Expert Systems with Applications, 2013, 40(16): 6538-6560.
[72] SINGH P K, ASWANI KUMAR C, GANI A. A comprehensive survey on formal concept analysis, its research trends and applications[J]. International Journal of Applied Mathematics and Computer Science, 2016, 26(2): 495-516.
[73] YAO Yiyu. Concept lattices in rough set theory[C] // Proceedings of 2004 Annual Meeting of the North American Fuzzy Information Processing Society, USA: IEEE, 2004: 796-801.
[74] YAO Yiyu. A comparative study of formal concept analysis and rough set theory in data analysis[C] // Proceedings of 4th International Conference on Rough Sets and Current Trends in Computing, Berlin: Springer, 2004: 59-68.
[75] YAO Yiyu. Rough-set concept analysis: Interpreting RS-definable concepts based on ideas from formal concept analysis[J]. Information Sciences, 2016, 346-347: 442-462.
[76] 张文修, 姚一豫, 梁怡. 粗糙集与概念格[M]. 西安: 西安交通大学出版社, 2006. ZHANG Wenxiu, YAO Yiyu, LEUNG Yee. Rough set and concept lattice[M]. Xian: Xian Jiaotong University Press, 2006.
[77] DUNTSCH I, GEDIGA G. Modal-style operators in qualitative data analysis[C] // Proceedings of the 2002 IEEE International Conference on Data Mining, USA: IEEE, 2002: 155-162.
[78] CHEN Jinkun, LI Jinjin, LIN Yaojin, et al. Relations of reduction between covering generalized rough sets and concept lattices[J]. Information Sciences, 2015, 304: 16-27.
[79] TAN Anhui, LI Jinjin, LIN Guoping. Connections between covering-based rough sets and concept lattices[J]. International Journal of Approximation Reasoning, 2015, 56: 43-58.
[80] WANG Xia, ZHANG Wenxiu. Relations of attribute reduction between object and property oriented concept lattice[J]. Knowledge-Based Systems, 2008, 21(5): 398-403.
[81] 仇国芳,张志霞,张炜.基于粗糙集方法的概念格理论研究综述[J]. 模糊系统与数学, 2014, 28(1): 168-177. QIU Guofang, ZHANG Zhixia, ZHANG Wei. A survey for study on concept lattice theory via rough set[J]. Fuzzy systems and Mathematics, 2014, 28(1): 168-177.
[82] 魏玲, 祁建军, 张文修. 概念格与粗糙集的关系研究[J]. 计算机科学, 2006, 33(3):18-21. WEI Ling, QI Jianjun, ZHANG Wenxiu. Study on relationships between concept lattice and rough set[J]. Computer Science, 2006, 33(3): 18-21.
[83] 王俊红, 梁吉业. 概念格与粗糙集[J]. 山西大学学报(自然科学版), 2003, 26(4): 307-310. WANG Junhong, LIANG Jiye. Concept lattice and rough set[J]. Journal of Shanxi University(Natural Science Edition), 2003, 26(4): 307-310.
[84] LIN T Y. Granular computing on binary relations I: Data mining and neighborhood systems[C] // Rough Sets in Knowledge Discovery, Berlin: Springer, 1998: 107-121.
[85] YAO Yiyu. Information granulation and rough set approximation[J]. International Journal of Intelligent Systems, 2001, 16: 87-104.
[86] 梁吉业, 钱宇华. 信息系统中的信息粒与熵理论[J].中国科学(信息科学), 2008, 38(12): 2048-2065. LIANG Jiye, QIAN Yuhua. Information granules and entropy theory in information systems[J]. Science China(Information Sciences), 2008, 38(12): 2048-2065.
[87] 王国胤, 张清华, 马希骜, 等. 知识不确定性问题的粒计算模型[J]. 软件学报, 2011, 22(4): 676-694. WANG Guoyin, ZHANG Qinghua, MA Xiao, et al. Granular computing models for knowledge uncertainty[J]. Journal of Software, 2011, 22(4): 676-694.
[88] 苗夺谦, 徐菲菲, 姚一豫, 等. 粒计算的集合论描述[J]. 计算机学报, 2012, 35(2): 351-363. MIAO Duoqian, XU Feifei, YAO Yiyu, et al. Set-theoretic formulation of granular computing[J]. Chinese Journal of Computers, 2012, 35(2): 351-363.
[89] ZHANG Xianyong, MIAO Duoqian. Three-layer granular structures and three-way informational measures of a decision table[J]. Information Sciences, 2017, 412-413: 67-86.
[90] 刘文奇. 中国公共数据库数据质量控制模型体系及实证[J].中国科学(信息科学), 2014, 44(7): 836-856. LIU Wenqi. Modeling data quality control system for Chinese public database and its empirical analysis[J]. Science China(Information Sciences), 2014, 44(7): 836-856.
[91] ZHI Huilai, LI Jinhai. Granule description based on formal concept analysis[J]. Knowledge-Based Systems, 2016, 104: 62-73.
[92] CHEN Hongmei, LI Tianrui, RUAN D, et al. A rough-set-based incremental approach for updating approximations under dynamic maintenance environments[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(2): 274-284.
[93] CHEN Hongmei, LI Tianrui, LUO Chuan, et al, A rough set-based method for updating decision rules on attribute values' coarsening and refining[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(12): 2886-2899.
[94] LUO Chuan, LI Tianrui, CHEN Hongmei. Dynamic maintenance of approximations in set-valued ordered decision systems under the attribute generalization[J]. Information Sciences, 2014, 257: 210-228.
[95] LIU Dun, LI Tianrui, ZHANG Junbo. Incremental updating approximations in probabilistic rough sets under the variation of attributes[J]. Knowledge-Based Systems, 2015, 73: 81-96.
[96] CHEN Degang, YANG Yanyan, DONG Ze. An incremental algorithm for attribute reduction with variable precision rough sets[J]. Applied Soft Computing, 2016, 45: 129-149.
[97] FORMICA A. Ontology-based concept similarity in formal concept analysis[J]. Information Sciences, 2006, 176: 2624-2641.
[98] LI Jinhai, REN Yue, MEI Changlin, et al. A comparative study of multigranulation rough sets and concept lattices via rule acquisition[J]. Knowledge-Based Systems, 2016, 91: 152-164.
[99] LI Lifeng. Multi-level interval-valued fuzzy concept lattices and their attribute reduction[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(1): 45-56.
[100] 郝晨, 范敏, 李金海, 等.多标记背景下基于粒标记规则的最优标记选择[J]. 模式识别与人工智能, 2016, 29(3): 272-280. HAO Chen, FAN Min, LI Jinhai, et al. Optimal scale selection in multi-scale contexts based on granular scale rules[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(3): 272-280.
[101] WU Xindong, ZHU Xingquan, WU Gongqing, et al. Data mining with big data[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(1): 97-107.
[102] ANTONI Lubomir, KRAJCI Stanislav, KRIDLO Ondrej, et al. On heterogeneous formal contexts[J]. Fuzzy Sets and Systems, 2014, 234: 22-33.
[103] 智慧来. 面向异构数据分析的形式概念分析扩展模型[J]. 电子学报, 2013, 41(12): 2451-2455. ZHI Huilai. Extended model of formal concept analysis oriented for heterogeneous data analysis[J]. Acta Electronica Sinica, 2013, 41(12): 2451-2455.
[104] 梁吉业, 钱宇华, 李德玉, 等. 大数据挖掘的粒计算理论与方法[J].中国科学(信息科学), 2015, 45(11): 1355-1369. LIANG Jiye, QIAN Yuhua, LI Deyu, et al. Theory and method of granular computing for big data mining[J]. Science China(Information Sciences), 2015, 45(11): 1355-1369.
[105] 徐计, 王国胤, 于洪. 基于粒计算的大数据处理[J]. 计算机学报, 2015, 38(8): 1497-1517. XU Ji, WANG Guoyin, YU Hong. Review of big data processing based on granular computing[J]. Chinese Journal of Computers, 2015, 38(8): 1497-1517.
[106] 钱进, 苗夺谦, 张泽华. 云计算环境下知识约简算法[J]. 计算机学报, 2011, 34(12): 2332-2343. QIAN Jin, MIAO Duoqian, ZHANG Zehua. Knowledge reduction algorithms in cloud computing[J]. Chinese Journal of Computers, 2011, 34(12): 2332-2343.
[107] QIAN Yuhua, LIANG Jiye, PEDRYCZ W, et al. Positive approximation: an accelerator for attribute reduction in rough set theory[J]. Artificial Intelligence, 2010, 174: 597-618.
[108] HU Qinghua, ZHANG David, AN Shuang, et al. On robust fuzzy rough set models[J]. IEEE Transactions on Fuzzy Systems, 2012, 20(4): 636-651.
[109] LI Jinhai, HUANG Chenchen, XU Weihua, et al. Cognitive concept learning via granular computing for big data[C] // Proceedings of the 2015 International Conference on Machine Learning and Cybernetics, USA: IEEE, 2015: 289-294.
[110] 武秀波, 苗霖, 吴丽娟, 等.认知科学概论[M]. 北京: 科学出版社, 2007. WU Xiubo, MIAO Lin, WU Lijuan, et al. Introduction to cognitive science[M]. Beijing: Science Press, 2007.
[111] 吴伟志, 高仓健, 李同军. 序粒度标记结构及其粗糙近似[J]. 计算机研究与发展, 2014, 51(12): 2623-2632. WU Weizhi, GAO Cangjian, LI Tongjun. Ordered granular labeled structures and rough approximations[J]. Journal of Computer Research and Development, 2014, 51(12): 2623-2632.
[112] 代建华, 陈卫东, 潘云鹤. 基于粗糙集的综合推理模型[J]. 浙江大学学报(工学版), 2006, 40(9): 1526-1530. DAI Jianhua, CHEN Weidong, PAN Yunhe. Synthesis reasoning model based on rough set theory[J]. Journal of Zhejiang University(Engineering Science), 2006, 40(9): 1526-1530.
[113] SHE Yanhong, HE Xiaoli. On the structure of the multigranulation rough set model[J]. Knowledge-Based Systems, 2012, 36: 81-92.
[114] MIN Fin, HE Huaping, QIAN Yuhua, et al. Test-cost-sensitive attribute reduction[J]. Information Sciences, 2011, 181(22): 4928-4942.
[115] HUANG Bing, ZHUANG Yuliang, LI Huaxiong. Information granulation and uncertainty measures in interval-valued intuitionistic fuzzy information systems[J]. European Journal of Operational Research, 2013, 231(1): 162-170.
[116] LANG Guangming, MIAO Duoqian, YANG Tian, et al. Knowledge reduction of dynamic covering decision information systems when varying covering cardinalities[J]. Information Sciences, 2016, 346-347: 236-260.
[117] WANG Ying. On cognitive computing[J]. International Journal of Software Science and Computational Intelligence, 2009, 1(3):1-15.
[118] 张涛,任宏雷,洪文学,等. 基于属性拓扑的可视化形式概念计算[J]. 电子学报, 2014, 42(5): 925-932. ZHANG Tao, REN Honglei, HONG Wenxue, et al. The visualizing calculation of formal concept based on the attribute topologies[J]. Acta Electronica Sinica, 2014, 42(5): 925-932.
[119] PEDRYCZ W, SKOWRON A, KREINOVICH V. Handbook of Granular Computing[M]. USA: Wiley, 2008.
[120] YAO Jingtao, VASILAKOS A V, PEDRYCZ W. Granular computing: perspectives and challenges[J]. IEEE Transactions on Cybernetics, 2013, 43(6): 1977-1989.
[121] KOFFKA K. Principles of gestalt psychology[M]. San Diego: Harcourt, 1967.
[122] KING D B, WERTHEIMER M. Max wertheimer and gestalt theory[M]. Piscataway: Transaction Publishers, 2004.
[123] 徐伟华, 李金海, 魏玲, 等. 形式概念分析理论与应用[M]. 北京: 科学出版社, 2016. XU Weihua, LI Jinhai, WEI Ling, et al. Formal concept analysis: theory and application[M]. Beijing: Science Press, 2016.
[124] XU Weihua, LI Jinhai, SHAO Mingwen, ZHANG Wenxiu. Editorial[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(1): 1-2.
[1] 晏燕,郝晓弘. 差分隐私密度自适应网格划分发布方法[J]. 山东大学学报(理学版), 2018, 53(9): 12-22.
[2] 张恩胜. 区间集概念格属性约简的组成与结构[J]. 山东大学学报(理学版), 2018, 53(8): 17-24.
[3] 刘利钊,于佳平,刘健,李俊祎,韩哨兵,许华荣,林怀钏,朱顺痣. 基于量子辐射场的大数据安全存储寻址算法[J]. 山东大学学报(理学版), 2018, 53(7): 65-74.
[4] 黄桃林,牛娇娇,李金海. 基于粒辨识属性矩阵的动态形式背景约简更新方法[J]. 山东大学学报(理学版), 2017, 52(7): 13-21.
[5] 刘琳,魏玲,钱婷. 决策形式背景中具有置信度的三支规则提取[J]. 山东大学学报(理学版), 2017, 52(2): 101-110.
[6] 陈雪,魏玲,钱婷. 基于AE-概念格的决策形式背景属性约简[J]. 山东大学学报(理学版), 2017, 52(12): 95-103.
[7] 黄伟婷,赵红,祝峰. 代价敏感属性约简的自适应分治算法[J]. 山东大学学报(理学版), 2016, 51(8): 98-104.
[8] 覃丽珍, 李金海, 王扬扬. 基于概念格的知识发现及其在高校就业数据分析中的应用[J]. 山东大学学报(理学版), 2015, 50(12): 58-64.
[9] 汤亚强, 范敏, 李金海. 三元形式概念分析下的认知系统模型及信息粒转化方法[J]. 山东大学学报(理学版), 2014, 49(08): 102-106.
[10] 马媛媛, 孟慧丽, 徐久成, 朱玛. 基于粒计算的正态粒集下的格贴近度[J]. 山东大学学报(理学版), 2014, 49(08): 107-110.
[11] 张春英, 王立亚, 刘保相. 基于覆盖的区间概念格动态压缩原理与实现[J]. 山东大学学报(理学版), 2014, 49(08): 15-21.
[12] 张清华1,2,幸禹可2,王国胤2. 概念知识粒与概念信息粒的相互转化[J]. J4, 2010, 45(9): 1-6.
[13] 王彬弟,魏玲. 基于关联格的概念格约简理论[J]. J4, 2010, 45(9): 20-26.
[14] 邱桃荣,王璐,熊树洁,白小明. 一种基于粒计算的知识隐藏方法[J]. J4, 2010, 45(7): 60-64.
[15] 张春英,薛佩军,刘保相 . CS(K)上的S-粗集特征[J]. J4, 2006, 41(2): 18-23 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!