-
基于语义图优化算法的中文微博观点摘要研究
- 张聪,裴家欢,黄锴宇,黄德根,殷章志
-
2017, 52(7):
59-65.
doi:10.6040/j.issn.1671-9352.1.2016.PC2
-
摘要
(
1425 )
PDF (872KB)
(
647
)
收藏
-
参考文献 |
相关文章 |
多维度评价
为从海量微博中高效地获取不同话题下的关键信息,微博观点摘要成为自然语言处理领域近期研究的热点之一。基线方法基于TF-IDF算法抽取微博句中的关键词,并据此计算微博的重要性分数,直接筛选出观点摘要;朴素改进方法在基线方法的基础上,增加了情感分类步骤,并利用微博句之间的语义距离,将摘要句候选集中语义重复、重要度较小的句子去除,生成观点摘要;基于语义图优化算法的方法在朴素改进方法的基础上,利用微博句的重要性分数及微博句之间的语义距离构建语义图结构,并通过图优化算法筛选出观点摘要。朴素改进方法在COAE2016评测任务一测试数据集上,10个话题的平均ROUGE-1值达到26.39%,平均ROUGE-2值达到0.68%,平均ROUGE-SU4值达到5.69%,且评测官方公布结果显示,该方法在9项评价指标中获得6项最佳性能。基于语义图优化算法的方法在评测样例数据集上进行了实验,结果显示,该方法比朴素改进方法在ROUGE-1,ROUGE-2,ROUGE-SU4值上分别提升了0.63%, 1.51%, 2.69%。